EXERCICE 1

On considère le repère orthonormé (O; \vec{i} , \vec{j}), et les points A(-3; -4), B(8; 0) et $\Omega(6; 3)$.

- 1. Déterminer une équation cartésienne du cercle de centre Ω et passant par B. Préciser le rayon du cercle.
- 2. Déterminer une équation de la droite (AB).
- 3. Déterminer les coordonnées du point E deuxième point d'intersection de la droite (AB) avec le cercle C.
- 4. Calculer alors le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AE}$.
- 5. Déterminer les coordonnées des points D et D' intersection de la droite $(A\Omega)$ avec le cercle C.
- 6. Calculer alors le produit scalaire \overrightarrow{AD} . \overrightarrow{AD}' . Que constate-t-on?
- 7. Déterminer une équation cartésienne du cercle C' de diamètre $[A\Omega]$.
- 8. Déterminer les coordonnées des points F et F' intersection des deux cercles C et C'.
- 9. Montrer que le triangle AF Ω est rectangle.
- 10. Calculer AF². Que constate-t-on?

EXERCICE 2

Sur un segment [AB] de longueur 8 cm, un point mobile se déplace de A vers B, puis de B vers I le milieu de [AB], puis de I vers le milieu de [IB], ainsi de suite, en repartant à chaque fois dans le sens contraire et en décrivant un chemin de longueur la moitié du chemin précédent.

- 1. Déterminer la position du point sur le segment [AB] au bout de cinq chemins.
- 2. Calculer la longueur parcourue au bout de cinq chemins.
- 3. On pose u_n = longueur parcourue au bout de n chemins.
- a) Montrer que u_n est la somme des termes d'une suite géométrique dont on précisera la raison et le premier terme.
- b) En déduire u_n en fonction de n.
- 4. S'il continue indéfiniment avec la même démarche, finira-t-il par s'arrêter? En quel point? Quelle distance aura-t-il parcourue?

DEVOIR MAISON N° 11

PREMIÈRE S 1

Mai 2010

EXERCICE 1

On considère le repère orthonormé (O; \vec{i} , \vec{j}), et les points A(-3; -4), B(8; 0) et $\Omega(6; 3)$.

- 1. Déterminer une équation cartésienne du cercle de centre Ω et passant par B. Préciser le rayon du cercle.
- 2. Déterminer une équation de la droite (AB).
- 3. Déterminer les coordonnées du point E deuxième point d'intersection de la droite (AB) avec le cercle C.
- 4. Calculer alors le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AE}$.
- 5. Déterminer les coordonnées des points D et D' intersection de la droite $(A\Omega)$ avec le cercle C.
- 6. Calculer alors le produit scalaire $\overrightarrow{AD} \cdot \overrightarrow{AD}'$. Que constate-t-on?
- 7. Déterminer une équation cartésienne du cercle C' de diamètre [A Ω].
- 8. Déterminer les coordonnées des points F et F' intersection des deux cercles C et C'.
- 9. Montrer que le triangle $AF\Omega$ est rectangle.
- 10. Calculer AF². Que constate-t-on?

EXERCICE 2

Sur un segment [AB] de longueur 8 cm, un point mobile se déplace de A vers B, puis de B vers I le milieu de [AB], puis de I vers le milieu de [IB], ainsi de suite, en repartant à chaque fois dans le sens contraire et en décrivant un chemin de longueur la moitié du chemin précédent.

- 1. Déterminer la position du point sur le segment [AB] au bout de cinq chemins.
- 2. Calculer la longueur parcourue au bout de cinq chemins.
- 3. On pose u_n = longueur parcourue au bout de n chemins.
- a) Montrer que u_n est la somme des termes d'une suite géométrique dont on précisera la raison et le premier terme.
- b) En déduire u_n en fonction de n.
- 4. S'il continue indéfiniment avec la même démarche, finira-t-il par s'arrêter? En quel point? Quelle distance aura-t-il parcourue?