EXERCICE 1

On considère le triangle ABC isocèle en A tel que (\overrightarrow{AB} ; \overrightarrow{AC}) = $\frac{\pi}{6}$ [2 π].

- 1. Construire le triangle ABC.
- 2. Déterminer une mesure de l'angle (\overrightarrow{BC} ; \overrightarrow{BA}).
- 3. Soit C' le symétrique de C par rapport à la droite (AB). Quelle est la nature du triangle ACC'?
- 4. Donner la mesure principale de chacun des angles $(\overrightarrow{AC}; \overrightarrow{AC'})$ et $(\overrightarrow{BC}; \overrightarrow{BC'})$.
- 5. Donner la mesure principale de (\overrightarrow{CB} ; $\overrightarrow{CC'}$).
- 6. Soit I le milieu du segment [BC]. Montrer que (\overrightarrow{BC} ; \overrightarrow{BA}) = (\overrightarrow{IA} ; $\overrightarrow{CC'}$) [2 π].

EXERCICE 2

On considère les points O, A, B et C tels que : $(\overrightarrow{OA}; \overrightarrow{OB}) = \frac{2\pi}{3}$ [2 π]; OB = $\sqrt{3}$ OA,

 $(\overrightarrow{OB}; \overrightarrow{OC}) = \frac{5\pi}{6}$ [2 π] et OC = $\frac{1}{3}$ OB. On pose $\overrightarrow{OA} = \vec{u}$, considéré comme vecteur unitaire.

- 1. Réaliser une figure (avec $\parallel \vec{u} \parallel = 3$ cm.
- 2. Déterminer les coordonnées polaires des points O, A, B et C dans le repère (O; \vec{u}).
- 3. En déduire la longueur AC.
- 4. Déterminer alors la mesure principale de l'angle (\overrightarrow{AO} ; \overrightarrow{AC}).

EXERCICE 3

Résoudre ans l'intervalle $]-\pi$; π] l'équation $\cos^2 x = \sin^2 x$.