- 1. Sur le cercle de centre O ci-dessous, tracé des deux diamètres [AF] et [PP'] perpendiculaires.
- 2. Tracé du cercle C_1 de diamètre [OP'] et de centre I, de la droite (AI) qui coupe le cercle C_1 en K et L tel que K est sur le segment [AI].
- 4. Le cercle de centre A et de rayon AK coupe le premier cercle en B et J. Le cercle de centre A et de rayon AL coupe le premier cercle en D et H. On admet que le segment [AB] est un côté du décagone ABCDEFGHIJ régulier inscrit dans le cercle de centre O. Construction du décagone ABCDEFGHIJ.
- 5. On suppose que le rayon du premier cercle est 1 unité.
- a) Le triangle OAI est rectangle en O, d'après le théorème de Pythagore :

AI² = OA² + OI² = I² +
$$\left(\frac{1}{2}\right)^2$$
 = I + $\frac{1}{4}$ = $\frac{5}{4}$, d'où AI = $\sqrt{\frac{5}{4}}$ = $\frac{\sqrt{5}}{2}$.
AK = AI - IK = $\frac{\sqrt{5}}{2}$ - $\frac{1}{2}$ = $\frac{\sqrt{5}-1}{2}$ et AL = AI + IL = $\frac{\sqrt{5}}{2}$ + $\frac{1}{2}$ = $\frac{\sqrt{5}+1}{2}$.

b) On a AB = AK = $\frac{\sqrt{5}-1}{2}$ qui est le côté du décagone régulier.

c) Le triangle AHF est rectangle en H car il est inscrit dans le grand cercle et le côté [AF] est un diamètre du

cercle. Donc HF² = AF² – AH² = AF² – AL² = 2² –
$$\left(\frac{\sqrt{5}+1}{2}\right)^2 = 4 - \frac{5+2\sqrt{5}+1}{4} = \frac{16-6-2\sqrt{5}}{4} = \frac{10-2\sqrt{5}}{4} = \frac{5-\sqrt{5}}{4}$$

$$\frac{5-\sqrt{5}}{2}$$
, d'où HF = $\sqrt{\frac{5-\sqrt{5}}{2}}$ = JB.

d) Soit T le point d'intersection des droites (OA) et (JB). On a OJ = OB (rayon du cercle circonscrit au décagone) et AJ = AB (côté du décagone régulier). Donc la droite (OA) est la médiatrice de [JB] ; donc T est le milieu de

[JB] et le triangle OBT est rectangle en T; et BT =
$$\frac{\text{JB}}{2} = \frac{1}{2} \sqrt{\frac{5 - \sqrt{5}}{2}}$$
.

L'aire du triangle OAB est égale

à
$$\frac{\text{OA} \times \text{BT}}{2} = \frac{1 \times \text{BT}}{2} = \frac{1}{4} \sqrt{\frac{5 - \sqrt{5}}{2}}$$
.

e) La valeur exacte de l'aire du décagone régulier

est
$$10 \times \text{aire}(OAB) = \frac{5}{2} \sqrt{\frac{5 - \sqrt{5}}{2}}$$
.

