EXERCICE 18

Cet exercice donne une généralisation d'une partie de l'exercice précédent :

Dans un repère orthonormé (O; \overrightarrow{i} , \overrightarrow{j}), on considère l'hyperbole \overrightarrow{H} d'équation $y=\frac{1}{x}$, et les points A, B et C distincts appartenant à \overrightarrow{H} , d'abscisses respectives a,b,c. Déterminer les coordonnées de l'orthocentre K du triangle ABC, en fonction de a,b,c et vérifier qu'il

CORRECTION

appartient à l'hyperbole H.

Les points A, B et C étant distincts et sur l'hyperbole \overline{H} , les réels a, b, c sont tous non nuls et distincts. L'orthocentre K du triangle ABC vérifie : les vecteurs \overline{AK} et \overline{BC} sont orthogonaux; les vecteurs \overline{BK} et \overline{AC} sont orthogonaux; donc en posant K(x; y), on a \overline{AK} . $\overline{BC} = 0$ d'où $(x - a)(c - b) + (y - \frac{1}{a})(\frac{1}{c} - \frac{1}{b}) = 0$ soit $(x - a)(c - b) + (y - \frac{1}{a})(\frac{b - c}{bc}) = 0$ et comme $b \ne c$ on peut simplifier par (c - b), d'où : $(x - a) - (y - \frac{1}{a})(\frac{1}{bc}) = 0$ soit $x = a + (y - \frac{1}{a})(\frac{1}{bc})$;

on a aussi $\overrightarrow{BK} \cdot \overrightarrow{AC} = 0$ d'où $(x - b)(c - a) + (y - \frac{1}{b})(\frac{1}{c} - \frac{1}{a}) = 0$ soit $(x - b)(c - a) + (y - \frac{1}{b})(a - c)\frac{1}{ac} = 0$ et comme $a \neq c$, on peut simplifier par (c - a) d'où $(x - b) - (y - \frac{1}{b})\frac{1}{ac} = 0$ soit $x = b + (y - \frac{1}{b})\frac{1}{ac}$;

on a donc $a + (y - \frac{1}{a})\frac{1}{bc} = b + (y - \frac{1}{b})\frac{1}{ac}$ soit $y(\frac{1}{bc} - \frac{1}{ac}) = b - a + \frac{1}{abc} - \frac{1}{abc} = b - a$ et ainsi y = -abc. En remplaçant y par -abc dans $x = b + (y - \frac{1}{b})\frac{1}{ac}$ on trouve $x = \frac{-1}{abc}$.

Les coordonnées du point K sont $(\frac{-1}{abc}; -abc)$.

On vérifie que $\frac{1}{x_K} = y_K$ donc K est bien sur l'hyperbole H.