A. Fonction polynôme

Définition : On appelle fonction polynôme, ou polynôme, toute fonction f définie sur \mathbb{R} par $f(x) = a_n x^n + ... + a_2 x^2 + a_1 x + a_0$, où les a_i sont des réels, appelés coefficients du polynôme f.

Notation: $f(x) = \sum_{k=0}^{k=n} a_k x^k$ (et qui se lit: « somme de k = 0 à k = n de $a_k x^k$ »).

- \triangleright Le plus grand entier *n* tel que a_n est non nul est le **degré** du polynôme noté deg(f).
- \triangleright Si, pour tout x, f(x) = 0, alors tous les a_i sont nuls (un polynôme est nul si et seulement si tous ses coefficients sont nuls).
- > Deux polynômes sont égaux si et seulement si les coefficients des monômes de même degré sont égaux.

Exemples de polynômes : $x^3 + 1$ est un polynôme de degré 3 ; $7x^4 - 8x^3 + x - 9$ est un polynôme de degré 4 ;

 $\frac{5}{2}$ est un polynôme de degré 0 ou constant ; $-\frac{1}{2}x + 3$ est un polynôme de degré 1 ou fonction affine.

B. Racines et factorisation

Soit f un polynôme et α un réel.

- a) α est une racine de f signifie que $f(\alpha) = 0$; ce qui est équivalent à α est une solution de l'équation f(x) = 0.
- b) α est une racine de f équivaut à f(x) se factorise par $(x \alpha)$ équivaut à : il existe un polynôme g de degré $\deg(f) 1$ tel que $f(x) = (x \alpha) g(x)$.
- c) Le nombre de racines de f est inférieur ou égal à deg(f).

d) *Exemples*: $f(x) = x^2 - 3x + 2 = (x - 1)(x - 2)$; 1 est une racine de f.

 $f(x) = 2x^3 - 3x^2 - 4x + 1 = (x + 1)(2x^2 - 5x + 1)$; -1 est une racine de f.

 $f(x) = x^4 - 2x^3 - x + 2 = (x - 1)(x - 2)(x^2 + x + 1)$. 1 et 2 sont des racines de f.

C. Polynôme de degré 2

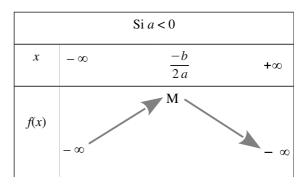
On l'appelle aussi le trinôme du second degré, et on le note $ax^2 + bx + c$ avec $a \ne 0$. On peut le factoriser :

$$ax^{2} + bx + c = a\left[x^{2} + \frac{b}{a}x + \frac{c}{a}\right] = a\left[(x + \frac{b}{2a})^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right] = a\left[(x + \frac{b}{2a})^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right].$$

On note $\Delta = b^2 - 4ac$, appelé le discriminant du polynôme. On a alors $ax^2 + bx + c = a(x + \frac{b}{2a})^2 - \frac{\Delta}{4a}$ appelée forme canonique du trinôme.

Le tableau de variations d'un polynôme du seconde degré :

Si $a > 0$								
х	$-\infty$ $\frac{-b}{2a}$	+∞						
f(x)	+∞ m	+∞						



Représentation graphique :

La représentation graphique d'un polynôme du second degré est une parabole.

Le sommet de la parabole a pour coordonnées ($\frac{-b}{2a}$; $\frac{-b^2+4ac}{4a}$).

La droite d'équation $x = \frac{-b}{2a}$ est un axe de symétrie de la courbe représentative de la fonction f définie par $f(x) = ax^2 + bx + c$.

Si le nombre a est strictement positif, alors la parabole est tournée vers le haut, et la fonction f admet un minimum m atteint lorsque $x = \frac{-b}{2a}$. On a bien sûr $m = \frac{-b^2 + 4ac}{4a}$.

Si le nombre a est strictement négatif, alors la parabole est tournée vers le bas, et la fonction f admet un maximum M atteint lorsque $x = \frac{-b}{2a}$. On a bien sûr $M = \frac{-b^2 + 4ac}{4a}$.

On peut alors résoudre **l'équation** $ax^2 + bx + c = 0$: Trois cas se présentent :

a) Si
$$\Delta = b^2 - 4ac < 0$$
; alors $(x + \frac{b}{2a})^2 - \frac{\Delta}{4a^2} > 0$ et l'équation n'a pas de solution.

b) Si
$$\Delta = b^2 - 4ac = 0$$
; alors l'équation devient $a(x + \frac{b}{2a})^2 = 0$ et la solution est $x = \frac{-b}{2a}$

c) Si
$$\Delta = b^2 - 4ac > 0$$
; alors $(x + \frac{b}{2a})^2 - \frac{\Delta}{4a^2}$ se factorise (en utilisant: $A^2 - B^2 = (A + B)(A - B)$):

$$(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a})(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a})$$
 et on obtient les solutions : $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Dans ce cas, on a la factorisation: $ax^2 + bx + c = a(x - x_1)(x - x_2)$.

Exemple: Résoudre l'équation: $3x^2 - 2x - 1 = 0$: On calcule le discriminant :

$$\Delta = b^2 - 4ac = (-2)^2 - 4 \times 3 \times (-1) = 4 + 12 = 16 = 4^2 > 0$$
, donc l'équation a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{2-4}{2 \times 3} = \frac{-2}{6} = \frac{-1}{3}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{2+4}{2 \times 3} = \frac{6}{6} = 1$. Les solutions sont $\frac{-1}{3}$ et 1.

Exercice: Résoudre les équations: $3x^2 - 2x - 1 = 0$; $2x^2 + 3x - 1 = 0$; $x^2 - 6x + 9 = 0$; $3x^2 + 5x + 3 = 0$.

Signe du trinôme : Signe de $ax^2 + bx + c$ suivant les valeurs de x :

Si $\Delta < 0$			Si $\Delta = 0$				Si $\Delta > 0$	(01	n suppose $x_1 <$	x_2)		
	x	$-\infty$	$+\infty$	$-\infty$	-b/(2 <i>a</i>)	+∞	$-\infty$	x_1		x_2	$+\infty$
($ax^2 + bx + c$	signe	e de a	signe	de a	0	signe de a	signe de a	0	signe de $-a$	0	signe de a

Exemple: Résoudre l'inéquation : $3x^2 - 2x - 1 < 0$: On calcule le discriminant :

$$\Delta = b^2 - 4ac = (-2)^2 - 4 \times 3 \times (-1) = 4 + 12 = 16 = 4^2 > 0$$
, donc l'équation a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{2-4}{2 \times 3} = \frac{-2}{6} = \frac{-1}{3}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{2+4}{2 \times 3} = \frac{6}{6} = 1$. Le signe du trinôme est alors :

x	- ∞	$\frac{-1}{3}$		1	1	
Signe de $3x^2 - 2x - 1$	+	0	-	0	+	

La solution est $S = \left[\frac{-1}{3}; 1\right]$.

Exercice: Résoudre les inéquations: $2x^2 + 3x - 1 > 0$; $x^2 - 6x + 9 \le 0$; $3x^2 + 5x + 3 > 0$.