A. Fonction polynôme

Définition : On appelle fonction polynôme, ou polynôme, toute fonction f définie sur \mathbb{R} par $f(x) = a_n x^n + ... + a_2 x^2 + a_1 x + a_0$, où les a_i sont des réels, appelés coefficients du polynôme f.

Notation : $f(x) = \sum_{k=0}^{k=n} a_k x^k$ (et qui se lit: « somme de k=0 à k=n de $a_k x^k$ »).

- \triangleright Le plus grand entier n tel que a_n est non nul est le **degré** du polynôme noté $\deg(f)$.
- \triangleright Si, pour tout x, f(x) = 0, alors tous les a_i sont nuls (un polynôme est nul si et seulement si tous ses coefficients sont nuls).
- > Deux polynômes sont égaux si et seulement si les coefficients des monômes de même degré sont égaux.

 $Exemples\ de\ polynômes: x^3+1$ est un polynôme de degré 3 ; $7x^4-8x^3+x-9$ est un polynôme de degré 4 ;

 $\frac{5}{2}$ est un polynôme de degré 0 ou constant ; $-\frac{1}{2}x+3$ est un polynôme de degré 1 ou fonction affine.

B. Racines et factorisation

Soit f un polynôme et α un réel.

- a) α est une racine de f signifie que $f(\alpha) = 0$; ce qui est équivalent à α est une solution de l'équation f(x) = 0.
- b) α est une racine de f équivaut à f(x) se factorise par $(x \alpha)$ équivaut à : il existe un polynôme g de degré $\deg(f) 1$ tel que $f(x) = (x \alpha) g(x)$.
- c) Le nombre de racines de f est inférieur ou égal à deg(f).

d) **Exemples**: $f(x) = x^2 - 3x + 2 = (x - 1)(x - 2)$; 1 est une racine de f.

 $f(x) = 2x^3 - 3x^2 - 4x + 1 = (x+1)(2x^2 - 5x + 1)$; -1 est une racine de f.

 $f(x) = x^4 - 2x^3 - x + 2 = (x - 1)(x - 2)(x^2 + x + 1)$. 1 et 2 sont des racines de f.

C. Polynôme de degré 2

On l'appelle aussi le trinôme du second degré, et on le note $ax^2 + bx + c$ avec $a \neq 0$. On peut le factoriser :

$$ax^2 + bx + c = a[x^2 + \frac{b}{a}x + \frac{c}{a}] = a[(x + \frac{b}{2a})^2 - \frac{b^2}{4a^2} + \frac{c}{a}] = a[(x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a^2}].$$

On note $\Delta = b^2 - 4ac$, appelé le discriminant du polynôme. On a alors $ax^2 + bx + c = a(x + \frac{b}{2a})^2 - \frac{\Delta}{4a}$ appelée forme canonique du trinôme.

Le tableau de variations d'un polynôme du seconde degré :

Si $a>0$							
x	− ∞	$\frac{-b}{2a}$	+∞				
f(x)	+∞	m /	+∞				

Si $a < 0$							
x	_ ∞	$\frac{-b}{2a}$	+∞				
f(x)	- w	M	- ∞				

Représentation graphique :

La représentation graphique d'un polynôme du second degré est une parabole.

Le sommet de la parabole a pour coordonnées ($\frac{-b}{2a}$; $\frac{-b^2+4ac}{4a}$).

La droite d'équation $x = \frac{-b}{2a}$ est un axe de symétrie de la courbe représentative de la fonction f définie par

Si le nombre a est strictement positif, alors la parabole est tournée vers le haut, et la fonction f admet un minimum m atteint lorsque $x=\frac{-b}{2a}$. On a bien sûr $m=\frac{-b^2+4ac}{4a}$.

Si le nombre a est strictement négatif, alors la parabole est tournée vers le bas, et la fonction f admet un maximum M atteint lorsque $x=\frac{-b}{2\,a}$. On a bien sûr $M=\frac{-b^2+4\,ac}{4\,a}$.

On peut alors résoudre l'équation $ax^2 + bx + c = 0$: Trois cas se présentent :

a) Si
$$\Delta = b^2 - 4ac < 0$$
; alors $(x + \frac{b}{2a})^2 - \frac{\Delta}{4a^2} > 0$ et l'équation n'a pas de solution.

b) Si
$$\Delta=b^2-4ac=0$$
 ; alors l'équation devient $a(x+\frac{b}{2a})^2=0$ et la solution est $x=\frac{-b}{2a}$

c) Si
$$\Delta = b^2 - 4ac > 0$$
; alors $(x + \frac{b}{2a})^2 - \frac{\Delta}{4a^2}$ se factorise (en utilisant: A² – B² = (A + B)(A – B)):

$$(x+rac{b}{2\,a}+rac{\sqrt{\Delta}}{2\,a}\,)(x+rac{b}{2\,a}-rac{\sqrt{\Delta}}{2\,a}\,)$$
 et on obtient les solutions : $x_1=rac{-b-\sqrt{\Delta}}{2\,a}$ et $x_2=rac{-b+\sqrt{\Delta}}{2\,a}$.

Dans ce cas , on obtient la factorisation : $\mathit{ax}^2 + \mathit{bx} + \mathit{c} = \mathit{a}(\mathit{x} - \mathit{x_1})(\mathit{x} - \mathit{x_2})$.

Propriétés des solutions : Si l'équation a deux solutions x_1 et x_2), alors $x_1 + x_2 = \frac{-b}{a}$ et $x_1 \times x_2 = \frac{c}{a}$.

Démonstration en exercice.

Exemple: Résoudre l'équation : $3x^2 - 2x - 1 = 0$: On calcule le discriminant :

$$\Delta = b^2 - 4ac = (-2)^2 - 4 \times 3 \times (-1) = 4 + 12 = 16 = 4^2 > 0$$
, donc l'équation a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{2-4}{2 \times 3} = \frac{-2}{6} = \frac{-1}{3}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{2+4}{2 \times 3} = \frac{6}{6} = 1$. Les solutions sont $\frac{-1}{3}$ et 1.

Exercice: Résoudre les équations : $3x^2 - 2x - 1 = 0$; $2x^2 + 3x - 1 = 0$; $x^2 - 6x + 9 = 0$; $3x^2 + 5x + 3 = 0$.

Signe du trinôme : Signe de $ax^2 + bx + c$ suivant les valeurs de x :

Si $\Delta < 0$		Si $\Delta=0$			$\mathrm{Si}\ \Delta > 0$	(or	n suppose $x_1 <$	$x_2)$		
x	- ∞	$+\infty$	− ∞	-b/(2a) + ∞	- ∞	x_1		x_2	+∞
$ax^2 + bx + c$	signe	e de a	signe o	de a = 0	signe de a	signe de a	0	signe de $-a$	0	signe de a

Exemple: Résoudre l'inéquation : $3x^2 - 2x - 1 < 0$: On calcule le discriminant :

$$\Delta = b^2 - 4ac = (-2)^2 - 4 \times 3 \times (-1) = 4 + 12 = 16 = 4^2 > 0$$
, donc l'équation a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{2-4}{2 \times 3} = \frac{-2}{6} = \frac{-1}{3}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{2+4}{2 \times 3} = \frac{6}{6} = 1$. Le signe du trinôme est alors :

La solution est $S = \left[\frac{-1}{3}; 1\right]$.

Exercice: Résoudre les inéquations: $2x^2 + 3x - 1 > 0$; $x^2 - 6x + 9 \le 0$; $3x^2 + 5x + 3 > 0$.

Prolongement: Factorisation d'un polynôme de degré 3 à l'aide d'une racine évidente ;

Factorisation de $x^n - 1$ par x - 1 et de $x^n - a^n$ par x - a;

Déterminer deux nombres réels dont on connaît la somme s et le produit p par la résolution de l'équation $x^2 - sx + p = 0$.