A. Barycentre de deux points

1. Définition: Soient a et b deux réels tels que $a + b \neq 0$ et deux points A et B du plan. Il existe un unique point G de la droite (AB) tel que $a \ \overline{GA} + b \ \overline{GB} = \vec{0}$. G est appelé le barycentre du système de points pondérés {

Notation : $G = bar\{(A,a); (B,b)\}.$

- **2.** Caractérisation : Avec la condition $a + b \neq 0$, on a l'équivalence :
- 1) $G = bar\{(A,a);(B,b)\};$
- 2) Pour tout point M du plan, $a \overline{MA} + b \overline{MB} = (a + b) \overline{MG}$;
- 3) $\overrightarrow{AG} = \frac{b}{a+b} \overrightarrow{AB}$;
- 4) Il existe un point O tel que $\frac{a}{a+b}$ $\overrightarrow{OA} + \frac{b}{a+b}$ $\overrightarrow{OB} = \overrightarrow{OG}$.
- **3. Construction**: exemples: $G = bar\{(A, 2); (B, 3)\}$; Α $K = bar\{(A, 2); (B, -1)\}$: *propriété*: si ab > 0, alors $G \in [AB]$ et si ab < 0, alors $G \notin [AB]$.
- **4. Propriétés :** a) Si a = b, G est appelé l'isobarycentre des points A et B ;
- b) Pour *k* réel non nul, on a $G = bar\{(A, a); (B, b)\} = G = bar\{(A, ka); (B, kb)\}.$

B. Barycentre de trois points

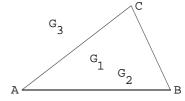
1. Définition : Soient a, b et c trois réels tels que $a + b + c \neq 0$ et trois points A, B et C du plan. Il existe un unique point G du plan (ABC) tel que $a \ \overline{GA} + b \ \overline{GB} + c \ \overline{GC} = \vec{0}$. G est appelé le barycentre du système de points pondérés $\{(A, a); (B, b); (C, c)\}.$

Notation : $G = bar\{(A, a); (B, b); (C, c)\}.$

- **2.** Caractérisation : Avec la condition $a + b + c \neq 0$, on a l'équivalence :
- 1) $G = bar\{(A, a); (B, b); (C, c)\};$
- 2) Pour tout point M du plan, $a \ \overline{MA} + b \ \overline{MB} + c \ \overline{MC} = (a + b + c) \ \overline{MG}$;
- 3) $\overrightarrow{AG} = \frac{b}{a+b+c} \overrightarrow{AB} + \frac{c}{a+b+c} \overrightarrow{AC}$;
- 4) Il existe un point O tel que $\frac{a}{a+b+c}$ $\overrightarrow{OA} + \frac{b}{a+b+c}$ $\overrightarrow{OB} + \frac{c}{a+b+c}$ $\overrightarrow{OC} = \overrightarrow{OC}$.
- **3. Construction:** exemples: Sur la figure ci-contre,

 $G_1 = bar\{(A,1);(B,1);(C,1)\}; G_2 = bar\{(A,2);(B,3);(C,1)\};$

 $G_3 = bar\{(A,2);(B,-1);(C,3)\}$.



4. Propriétés:

- a) Si a = b = c, G est appelé **l'isobarycentre** des points A, B et C ou centre de gravité du triangle ABC;
- b) Pour *k* réel non nul, on a $G = bar\{(A, a); (B, b); (C, c)\} = bar\{(A, ka); (B, kb); (C, kc)\}.$
- c) Associativité: si $a + b \neq 0$, soit S le barycentre de $\{(A, a); (B, b)\}$; alors $G = bar\{(S, a+b); (C, c)\}$.
- d) Dans l'espace, le barycentre de trois points A, B et C est dans le plan (ABC).

e) Coordonnées de G dans un repère (O;
$$\vec{i}$$
, \vec{j} , \vec{k}):
$$x_{G} = \frac{ax_{A} + bx_{B} + cx_{C}}{a + b + c} , y_{G} = \frac{ay_{A} + by_{B} + cy_{C}}{a + b + c} et z_{G} = \frac{az_{A} + bz_{B} + cz_{C}}{a + b + c} .$$

Pour n entier supérieur à 3, le barycentre de n points pondérés (A_1, a_1) , (A_2, a_2) , (A_3, a_3) , ..., (A_n, a_n) existe si la somme $a_1 + a_2 + a_3 + ... + a_n \neq 0$ et ce barycentre vérifie $a_1 \ \overline{GA_1} + a_2 \ \overline{GA_2} + a_3 \ \overline{GA_3} + ... + a_n \ \overline{GA_n} = \vec{0}$.

Exercices: a) Déterminer l'isobarycentre d'un quadrilatère quelconque ABCD.

- b) Déterminer le barycentre du système (A, 1),(B, 2),(C, -1),(D, 3).
- c) Déterminer l'isobarycentre d'un tétraèdre ABCD.
- d) ABCDEFGH est un cube ; déterminer l'isobarycentre de la pyramide ABCDE ; déterminer le barycentre de (A, 1), (C, 2), (F, -1).