Exercice 1 : Calculs algébrique

a)
$$e^2(e^4+e^5) = e^6 + e^7$$
;

a)
$$e^2(e^4 + e^5) = e^6 + e^7$$
; b) $e^{-3}(e^2 \times e^4)^3 = e^9$; c) $\frac{e^2 \times e^5}{e^{-1} \times e^3} = e^5$; d) $\sqrt{e^4 \times e^6} \times (e^{-1})^2 = e^3$;

d)
$$\sqrt{e^4 \times e^6} \times (e^{-1})^2 = e^3$$

e)
$$e^{2x+3} \times e^{4x-5} = e^{6x-2}$$
;

f)
$$\frac{e}{e+1} + \frac{e}{1+e^{-1}} = e$$
;

e)
$$e^{2x+3} \times e^{4x-5} = e^{6x-2}$$
; f) $\frac{e}{e+1} + \frac{e}{1+e^{-1}} = e$; g) $\frac{e^{2x} \times e^{x-5}}{e^{-x}} = e^{4x-5}$;

h)
$$\frac{e^{x^2} \times e^{x+1}}{e^{x^2-1}} = e^{x+2}$$
;

h)
$$\frac{e^x \times e^{x+1}}{e^{x^2-1}} = e^{x+2}$$
; i) $(e^x + e^{-x})^2 - (e^x - e^{-x})^2 = 4$.

Exercice 2 : Résolution d'équations et d'inéquations :

a) Résoudre les équations suivantes :

a)
$$e^x = 1 \Leftrightarrow x = 0$$
;

b)
$$e^{2x+1} = 1 \Leftrightarrow x = -0.5$$
;

a)
$$e^x = 1 \Leftrightarrow x = 0$$
; b) $e^{2x+1} = 1 \Leftrightarrow x = -0.5$; c) $e^{2x} + e^x - 2 = 0$; on pose $X = e^x$;

l'équation devient $X^2 + X - 2 = 0$, équation du second degré dont les solutions sont 1 et -2;

d'où $e^x = 1$ et $e^x = -2$ (impossible); donc la solution est 0;

d) $e^{2x} - 2e^x + 1 = 0$ on pose $X = e^x$; l'équation devient $X^2 - 2X + 1 = 0$, équation du second degré dont la solution est 1 ; d'où $e^x = 1$ donc la solution est 0 ;

e) $e^{2x} + 2e^x + 1 = 0$; on pose $X = e^x$; l'équation devient $X^2 + 2X + 1 = 0$, équation du second degré dont la solution est -1; d'où $e^x = -1$ impossible donc pas de solution.

b) Résoudre les inéquations suivantes :

a)
$$e^x \le 1 \Leftrightarrow x \in \mathbb{R}^-$$
;

a)
$$e^x \le 1 \Leftrightarrow x \in \mathbb{R}^-$$
; b) $e^{2x+1} \ge 1 \Leftrightarrow x \in [-0.5; +\infty[; c) e^{-x+1} \le 1 \Leftrightarrow x \in [1; +\infty[;]$

d)
$$e^{3x-4} \ge e^{-2x} \Leftrightarrow x \in [0,8; +\infty[$$
; e) $e^x - e^{-x} \le 0 \Leftrightarrow x \in \mathbb{R}^-$.

e)
$$e^x - e^{-x} \le 0 \Leftrightarrow x \in \mathbb{R}^-$$

Exercice 3 : Étude de fonctions :

Étude des fonctions suivantes ; toutes les fonctions sont définies sur \mathbb{R} .

a) $f(x) = (2x+1)e^{-x}$; $f'(x) = 2e^{-x} + (2x+1)(-e^{-x}) = (-2x+1)e^{-x}$ qui e

-2x

b) f(posit

est du signe de $(-2x+1)$ puisque $e^{-x}>0$ sur \mathbb{R} ;		- 7-
$x+1=0 \Leftrightarrow x=0.5$; d'où le tableau de variations :	f'(x)	+ 0 -
$f(x)=e^x-e^{-x}; f'(x)=e^x-(-e^{-x})=e^x+e^{-x}$ qui est strictement itif; d'où le tableau de variations :		$2e^{-0.5}$
$x - \infty$ 0 + ∞		/
(1/2)		

х	- ∞	0	+∞
f'(x)		+	
f(x)		0	Y

c)
$$f(x) = \frac{e^x + 1}{e^x + 2}$$
; $f'(x) = \frac{e^x(e^x + 2) - (e^x + 1)e^x}{(e^x + 2)^2} = \frac{e^x}{(e^x + 2)^2}$ qui est

strictement positif; d'où le tableau de variations:

$\mathrm{d})\; \mathit{f}(\mathit{x}) = \; rac{e^{\mathit{x}} - e^{-\mathit{x}}}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; \mathit{f} \dot{\;}(\mathit{x}) = \; rac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; rac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; rac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; rac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; rac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; rac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; rac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; rac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; rac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; rac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; rac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} + e^{-\mathit{x}}} \;\; ; f \dot{\;}(\mathit{x}) = \; \frac{\left(e^{\mathit{x}} - e^{-\mathit{x}}\right)}{e^{\mathit{x}} $	$+e^{-x}$) $(e^x + e^{-x}) - (e^x - e^{-x})(e^x - e^{-x})$
$e^{x} + e^{-x}, f(x) = e^{x} + e^{-x}$ $(e^{2x} + e^{0} + e^{0} + e^{-2x}) - (e^{2x} - e^{0} - e^{0} + e^{0} + e^{0})$	(-2x) 4
$\frac{(e^x + e^{-x})^2}{(e^x + e^{-x})^2}$	$\frac{e^{x}}{(e^{x}+e^{-x})^{2}}$ qui est strictement

 \boldsymbol{x} $-\infty$ $+\infty$ f'(x)+ f(x)

0.5

positif ; d'où le tableau de variations :

x	- ∞	+∞
f'(x)	+	
f(x)		V

e) $f(x)=e^{2x}-e^x-6$; $f'(x)=2e^{2x}-e^x=e^x$ ($2e^x-1$) qui est du signe de $2e^x-1$ puisque $e^{-x}>0$ sur $\mathbb R$; $2e^x-1>0$ équivaut à $e^x>0$,5 équivaut à $x>\ln(0,5)$; d'où le tableau de

variations:

f)
$$f(x) = e^x - x$$
; $f'(x) = e^x - 1$;

 $e^{x}-1>0$ équivaut à $e^{x}>1$ équivaut à x>0 ; d'où le tableau de

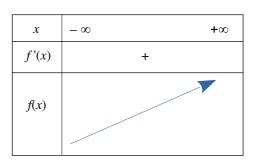
variations:

x	– ∞	0	+∞
f'(x)	_	0	+
f(x)		1	1

g)
$$f(x) = \frac{e^x}{1+e^x}$$
; $f'(x) = \frac{e^x(1+e^x)-e^x \times e^x}{(1+e^x)^2} = \frac{e^x}{(1+e^x)^2}$ qui est

strictement positif ; d'où le tableau de variations :

x	$-\infty$ $\ln(0,5)$ $+\infty$
f '(x)	- 0 +
f(x)	- 6,25



Exercice 4 : Représentations graphiques :

1. La courbe représentative de la fonction f définie par $f(x) = e^x - x$ admet-elle une tangente passant par l'origine du repère ? L'équation de la tangente à la courbe représentative de la fonction f en un point d'abscisse a est :

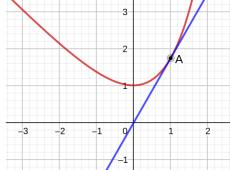
$$y = f'(a)(x - a) + f(a) = f'(a)x - af'(a) + f(a);$$

cette tangente passe par l'origine du repère si et seulement si

–
$$af'(a) + f(a) = 0$$
 (ordonnées à l'origine = 0) ; soit $af'(a) = f(a)$

équivaut à
$$a(e^a-1)=e^a-a\Leftrightarrow ae^a-a=e^a-a\Leftrightarrow ae^a=e^a\Leftrightarrow a=1$$
 puisque puisque $e^a>0$ sur $\mathbb R$;

Cette équation est y = (e-1)(x-1) + e-1 = (e-1)x. Figure ci-contre :



2. On considère les réels a et b, et la fonction f définie sur $\mathbb R$ par $f(x)=ae^{-x}+be^{-2x}$.

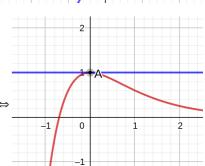
La dérivée de cette fonction est $f'(x) = -ae^{-x} - 2be^{-2x}$.

La courbe C représentative de f passe par le point A(0; 1) si f(0) = 1, soit $ae^0 + be^0 = a + b = 1$;

La courbe C admet une tangente horizontale en ce point si f'(0) = 0, soit $-ae^0 - 2be^0 = -a - 2b = 0$;

Soit $-ae^{-2be^{-a}} = -a - 2b = 0$; On résout le système d'équations : $\begin{vmatrix} a+b=1 \\ -a-2b=0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} a+b=1 \\ a=-2b \end{vmatrix} \Leftrightarrow \begin{vmatrix} -2b+b=1 \\ a=-2b \end{vmatrix} \Leftrightarrow$

 $\begin{cases} -b=1 \\ a=-2b \end{cases} \Leftrightarrow \begin{cases} b=-1 \\ a=2 \end{cases}. \text{ D'où } f(x)=2e^{-x}-e^{-2x} \text{ . Figure ci-contre}:$



3. On considère les réels a et b, et la fonction f définie sur $\mathbb R$ par $f(x)=a+be^{-x}$. La courbe C représentative de f passe par le point A(0 ; 3) si f(0)=3, soit $a+be^0=a+b=3$;

La courbe C admet une tangente en ce point de coefficient directeur égal à 1 si f'(0) = 1, soit $-be^0 = 1$, soit b = -1; d'où a - 1 = 3, soit a = 4.

D'où $f(x) = 4 - e^{-x}$. Figure ci-contre :

