NOM:	
DEVOIR SURVEILLÉ N° 4	

.....PRÉNOM :

PREMIÈRE

Vendredi 7 février 2020

EXERCICE 1 (5 points)

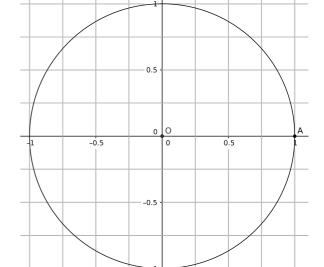
On considère les suites (u_n) et (v_n) définie sur $\mathbb N$ par $u_0=1$ et $u_{n+1}=u_n-4$; et $v_0=2$ et $v_{n+1}=4v_n$.

- 1. Préciser la nature de chacune des suites (u_n) et (v_n) et préciser leur raison.
- 2. Étudier les variations de ces suites.
- 3. Conjecturer la limite des ces suites.

EXERCICE 2 (4 points)

On considère la suite (u_n) définie sur \mathbb{N} par $u_n = 1 + \frac{1}{n+1}$.

- 1. Montrer que $u_{n+1} u_n = \frac{-1}{(n+2)(n+1)}$. En déduire le sens de variations de la suite (u_n) .
- 2. Montrer que pour tout entier naturel $n, 1 \le u_n \le 2$.
- 3. Conjecturer la limite de la suite (u_n) .


EXERCICE 3 (4 points)

1. Placer les points D et E sur le cercle trigonométrique ci-contre définis à l'aide des angles en radian suivants :

$$\widehat{AOD} \; = \; \frac{21\pi}{6} \; \; ; \quad \widehat{AOE} \; = \; \frac{-15\pi}{4} \, . \label{eq:AOD}$$

2. En déduire les cosinus et sinus des angles :

$$\widehat{AOD}$$
; \widehat{AOE} .

EXERCICE 4 (2 points)

1. Résoudre dans $\mathbb R$ les équations suivantes :

a)
$$2\cos(x) - 1 = 0$$
;

b)
$$\sin(x) = \frac{-\sqrt{3}}{2}$$
;

EXERCICE 5 (5 points)

On considère la fonction f définie sur \mathbb{R} par $f(x) = 2\cos(x) + 1$.

- 1. Montrer que la fonction f est périodique et préciser sa période.
- 2. Montrer que la fonction f est paire. Que peut-on en déduire pour la représentation graphique de la fonction f?
- 3. Dresser le tableau de variations de la fonction f sur l'intervalle $[0; 2\pi]$.
- 4. Montrer que, pour tout réel x, $-1 \le f(x) \le 3$.
- 5. Déterminer les solutions de l'équation f(x) = 0 sur l'intervalle $[0; 2\pi]$.

NOM:	PRÉNOM :	
DEVOIR SURVEILLÉ N° 4	PREMIÈRE	Vendredi 7 février 2020

Vendred<u>i 7 février 2020</u>

EXERCICE 1 (5 points)

On considère les suites (u_n) et (v_n) définie sur $\mathbb N$ par $u_0=1$ et $u_{n+1}=u_n+2$; et $v_0=-4$ et $v_{n+1}=2v_n$.

- 1. Préciser la nature de chacune des suites (u_n) et (v_n) et préciser leur raison.
- 2. Étudier les variations de ces suites.
- 3. Conjecturer la limite des ces suites.

EXERCICE 2 (4 points)

On considère la suite (u_n) définie sur \mathbb{N} par $u_n = 1 - \frac{1}{n+1}$.

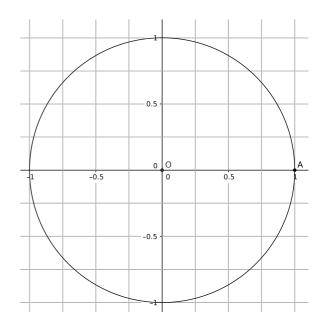
- 1. Montrer que $u_{n+1}-u_n=\frac{1}{(n+2)(n+1)}$. En déduire le sens de variations de la suite (u_n) .
- 2. Montrer que pour tout entier naturel $n, 0 \le u_n \le 1$.
- 3. Conjecturer la limite de la suite (u_n) .

EXERCICE 3 (4 points)

1. Placer les points D et E sur le cercle trigonométrique ci-contre définis à l'aide des angles en radian suivants :

$$\widehat{AOD} \; = \; \frac{-31\,\pi}{6} \; \; ; \quad \widehat{AOE} \; = \; \frac{27\,\pi}{4} \; . \label{eq:AOD}$$

2. En déduire les cosinus et sinus des angles :


$$\widehat{AOD}$$
; \widehat{AOE} .

1. Résoudre dans $\mathbb R$ les équations suivantes :

a)
$$2\sin(x) - 1 = 0$$
;

b)
$$\cos(x) = \frac{-\sqrt{3}}{2}$$
;

EXERCICE 5 (5 points)

On considère la fonction f définie sur \mathbb{R} par $f(x) = \cos(x) + 2$.

- 1. Montrer que la fonction f est périodique et préciser sa période.
- 2. Montrer que la fonction f est paire. Que peut-on en déduire pour la représentation graphique de la fonction f?
- 3. Dresser le tableau de variations de la fonction f sur l'intervalle $[0; 2\pi]$.
- 4. Montrer que, pour tout réel x, $1 \le f(x) \le 3$.
- 5. Déterminer les solutions de l'équation f(x) = 1.5 sur l'intervalle $[0; 2\pi]$.