LES INEQUATIONS

1. Résolution des inéquations à une inconnue

a) L'inéquation du premier degré

Il s'agit des inéquations de la forme ax + b > 0 ou ax + b < 0 ou ax + b > 0 ou ax + b < 0 (avec $a \ne 0$) ou s'y ramenant.

Exemple: $3x - 2 \ge x + 7$; on se ramène à une des inéquations précédentes en écrivant $3x - x - 2 - 7 \ge 0$,

qui s'écrit $2x - 9 \ge 0$. La solution de cette inéquation est $x \ge \frac{9}{2}$ qui peut s'écrire $x \in [\frac{9}{2}; +\infty[$.

Inéquation		ax + b > 0	$ax + b < 0 ax + b \ge 0$		$ax + b \le 0$
Solution	Si <i>a</i> > 0	$x \in \left] \frac{-b}{a} \right] + \infty [$	$x \in]-\infty; \frac{-b}{a}[$	$x \in \left[\frac{-b}{a}; +\infty\right[$	$x \in]-\infty; \frac{-b}{a}]$
	Si <i>a</i> < 0	$x \in]-\infty; \frac{-b}{a}[$	$x \in \left] \frac{-b}{a} ; +\infty \right[$	$x \in]-\infty; \frac{-b}{a}]$	$x \in \left[\frac{-b}{a}; +\infty\right[$

Attention: La solution de l'inéquation ax > 0 est $x \in [0]$ 0; $+\infty$ [si a > 0 et $x \in [-\infty]$ 0 [si a < 0 .

b) Les inéquations produit

Il s'agit des inéquations se présentant sous la forme d'un produit de facteurs de la forme ax + b, ce produit étant supérieur ou inférieur à 0. On réalise un tableau de signes donnant le signe de chacun des facteurs de la forme ax + b, et le signe du produit. On utilise pour cela le signe de ax + b traité dans le chapitre sur les fonctions affines.

Voir le cours sur les fonctions affines : http://dominique.frin.free.fr/seconde/cours2_fctaffine.pdf .

Une propriété à utiliser: Un produit de facteurs est nul si l'un au moins des facteurs est nul.

Il est parfois nécessaire de factoriser l'expression donnée pour se ramener à une inéquation à produit supérieur ou inférieur à 0.

Exemples: 1) Résoudre l'inéquation $9x^2 - 4 < 0$; on factorise d'abord l'expression $9x^2 - 4 = (3x - 2)(3x + 2)$, et ensuite, on résout l'inéquation (3x - 2)(3x + 2) < 0 en réalisant un tableau de signes:

$$3x - 2 = 0$$
, soit $x = \frac{2}{3}$; $3x + 2 = 0$, soit $x = \frac{-2}{3}$.

x	- ∞	$\frac{-2}{3}$		$\frac{2}{3}$		+∞
Signe de $3x - 2$	_		_	0	+	
Signe de $3x + 2$	_	0	+		+	
Signe du produit	+	0	_	0	+	

Le signe du produit se détermine
grâce à la règle du produit des signes:
$$+ \times + = +;$$

 $+ \times - = -;$
 $- \times + = -;$

Le produit $(3x-2)(3x+2) = 9x^2 - 4$ doit être < 0 (strictement négatif), donc la solution de cette inéquation est

l'intervalle] $\frac{-2}{3}$; $\frac{2}{3}$ [. On note l'ensemble solution: $S = \frac{-2}{3}$; $\frac{2}{3}$ [.

2) Résoudre l'inéquation $x^2 - 25 \ge (x+5)(2x-1)$; on compare l'expression à $0: x^2 - 25 - (x+5)(2x-1) \ge 0$, puis on factorise l'expression $(x-5)(x+5) - (x+5)(2x-1) \ge 0$, puis on factorise par le facteur commun $(x+5)[(x-5) - (2x-1)] \ge 0$, on simplifie l'expression $(x+5)[-x-4] \ge 0$, et ensuite, on réalise un tableau de signes

x	- ∞	- 5		- 4	+∞
Signe de $x + 5$	_	0	+		+
Signe de $-x-4$	+	0	+	0	_
Signe du produit	_	0	+	0	_

Le produit doit être positif ou nul, donc la solution de cette inéquation est l'intervalle [-5;-4].

L'ensemble solution est S = [-5; -4].

b) Les inéquations quotient

Il s'agit des inéquations se présentant sous la forme d'un quotient de facteurs de la forme ax + b, ce quotient étant supérieur ou inférieur à 0. On réalise un tableau de signes donnant le signe de chacun des facteurs de la forme ax + b, et le signe du quotient.

Attention: une valeur interdite intervient dans le tableau.

Exemples: 1) Résoudre l'inéquation $\frac{x^2-4}{x+3} \le 0$; on factorise d'abord l'expression $x^2-4=(x-2)(x+2)$, et ensuite, on

résout l'inéquation $\frac{(x-2)(x+2)}{x+3} \le 0$; en réalisant un tableau de signes:

x	$-\infty$	-3	-2		2	+∞
Signe de $x - 2$	_		_	_	0	+
Signe de $x + 2$	_		- 0	+		+
Signe de $x + 3$	_	0	+	+		+
Signe du quotient	_	II	+ 0	_	0	+

Attention: la valeur – 3 est une valeur interdite car elle annule le dénominateur.

Le quotient $\frac{(x-2)(x+2)}{x+3}$ doit être

négatif, donc la solution de cette inéquation est $S =]-\infty; -3[\cup [-2; 2].$

2. Résolution des inéquations à deux inconnues

Il s'agit des inéquations de la forme ax + by + c > 0 (respectivement < 0 ou ≥ 0 ou ≤ 0) ou s'y ramenant. On considère l'équation ax + by + c = 0 qui est l'équation d'une droite du plan. Les solutions des inéquations précédentes sont les coordonnées des points du plan contenus dans un demi-plan de frontière cette droite (la droite est incluse dans la solution si l'inégalité est au sens large : \ge ou \le).

Pour déterminer le demi-plan solution, il suffit de tester si un point en dehors de la droite a des coordonnées qui vérifient l'inégalité.

Exemple: Résoudre l'inéquation : $3x - 2y + 1 \ge 0$.

On trace dans le plan la droite d'équation 3x - 2y + 1 = 0

d'équation réduite $y = \frac{3}{2}x + \frac{1}{2}$.

En considérant l'origine du repère, ses coordonnées vérifient l'inégalité : $3\times0-2\times0+1=1\geqslant0$. Donc le point O est dans le demi-plan solution. Le demi-plan solution est colorié sur la figure ci-contre:

