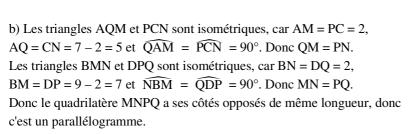
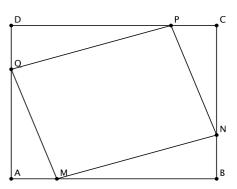
1. a) Construction du rectangle ABCD tel que AB = 9 cm et BC = 7 cm et les points M, N, P, Q respectivement sur les côtés [AB], [BC], [CD] et [DA] tels que AM = BN = CP = DQ = 2 cm.





c) L'aire de MNPQ est égale à l'aire de ABCD – l'aire des triangles AQM, BMN, CPN et QDP.

L'aire de AQM = aire de PCN =
$$\frac{2\times5}{2}$$
 = 5. L'aire de BMN = aire de QDP = $\frac{2\times7}{2}$ = 7.

Ainsi aire(MNPQ) = $7 \times 9 - 2 \times 7 - 2 \times 5 = 39 \text{ cm}^2$.

2. a) L'aire S(x) est égale à l'aire de ABCD – l'aire des triangles AQM, BMN, CPN et QDP, soit

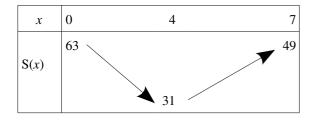
$$S(x) = 63 - 2 \times \frac{x(7-x)}{2} - 2 \times \frac{x(9-x)}{2} = 63 - x(7-x) - x(9-x) = 63 - 7x - 9x + 2x^2 = 2x^2 - 16x + 63.$$

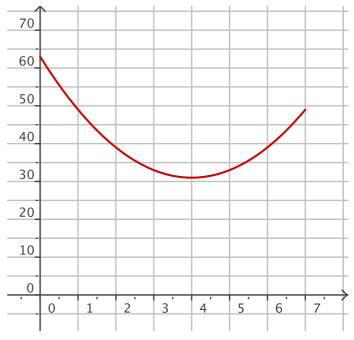
b) Tableau de valeurs de la fonction S sur l'intervalle [0; 7] :

х	0	1	2	3	4	5	6	7
S(x)	63	49	39	33	31	33	39	49

Représentation graphique de la fonction S sur l'intervalle [0; 7].

c) Le tableau de variations de S.





La fonction S est croissante sur l'intervalle [0; 4] et décroissante sur l'intervalle [4; 7].

d) On conjecture que le minimum de la fonction S est 31 atteint pour x = 4; le maximum de la fonction S est 63 atteint pour x = 0.

3. a) On a
$$2(x-4)^2 + 31 = 2(x^2 - 8x + 16) + 31 = 2x^2 - 16x + 32 + 31 = 2x^2 - 16x + 63 = S(x)$$
.

b) Un carré étant toujours positif, $(x-4)^2 \ge 0$, donc $2(x-4)^2 \ge 0$, donc $2(x-4)^2 + 31 \ge 31$, soit $S(x) \ge 31$, et ainsi le minimum de la fonction S est bien 31; il est atteint lorsque $2(x-4)^2 = 0$, soit x = 4.