EXERCICE 1 : Au neuvième siècle de notre ère, le mathématicien persan Al-Kaayyam a mis au point une méthode de résolution des équation du troisième degré.

On considère l'équation $x^3 - 4x - 3 = 0$.

0 n'est pas solution, donc on peut écrire l'équation sous la

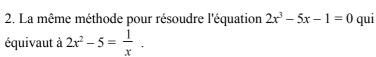
forme
$$x^2 - 4 = \frac{3}{x}$$
;

1. Si 0 n'est pas solution de l'équation, on a les équivalences : $x^3 - 4x - 3 = 0$ équivaut à $x^3 - 4x = 3$ équivaut à

$$x^2 - 4 = \frac{3}{x}$$
 équivaut à $f(x) = g(x)$; il ne reste plus qu'à trouver

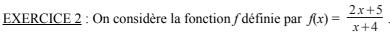
les abscisses des points d'intersection des deux courbes représentatives des fonctions f et g. A l'aide de la calculatrice ou d'un logiciel traceur de courbes, on trouve des valeurs approchées à 0,1 près des solutions :

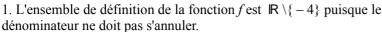
$$x_A = -1.3$$
; $x_B = 2.3$; $x_C = -1$.



Les valeurs approchées à 0,1 près des solutions : $x_A = -1,47$; $x_B = 1,67$; $x_C = -0,2$.

$$x_A = -1.47$$
; $x_B = 1.67$; $x_C = -0.2$.





2. Pour tout réel x différent de -4, 2 -
$$\frac{3}{x+4} = \frac{2(x+4)-3}{x+4} = \frac{2}{x+4}$$

$$\frac{2x+8-3}{x+4} = \frac{2x+5}{x+4} = f(x).$$

3. On considère deux réels a et b de l'intervalle $]-\infty$; -4[, tels que

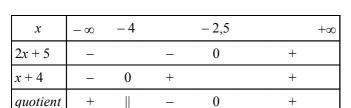
$$a < b < -4$$
; on ajoute 4: $a + 4 < b + 4 < 0$; on passe à l'inverse :
$$\frac{1}{a+4} > \frac{1}{b+4}$$
; on multiplie par -3 :
$$\frac{-3}{a+4} < \frac{-3}{b+4}$$
;

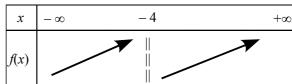
on ajoute $2: 2 - \frac{3}{a+4} < 2 - \frac{3}{b+4}$, soit f(a) < f(b); l'ordre est conservé, donc la fonction f est croissante sur $]-\infty$; -4[.

On considère deux réels a et b de l'intervalle]-4; $+\infty$ [, tels que -4 < a < b; on ajoute 4: 0 < a + 4 < b + 4] on passe à l'inverse : $\frac{1}{a+4} > \frac{1}{b+4}$; on multiplie par $-3 : \frac{-3}{a+4} < \frac{-3}{b+4}$; on ajoute $2 : 2 - \frac{3}{a+4} < 2 - \frac{3}{b+4}$, soit f(a) < f(b); l'ordre est conservé, donc la fonction f est croissante sur]-4; $+\infty$

4. Le tableau de variations de f.

5. L'inéquation $f(x) \le 0$ équivaut à $\frac{2x+5}{x+4} \le 0$. On réalise un tableau de signes :





La solution est S = [-4, -2, 5].