EXERCICE 1

(8 points)

Soit $A(x) = (3 + x)^2 - (8x - 1)(3 + x)$.

- 1. On développe $A(x) = (3 + x)^2 (8x 1)(3 + x) = 9 + 6x + x^2 (24x + 8x^2 3 x) = 9 + 6x + x^2 23x 8x^2 + 3 = -7x^2 17x + 12$.
- 2. On factorise par (3 + x), soit A(x) = (3 + x)[(3 + x) (8x 1)] = (3 + x)(-7x + 4).
- 3. Résolution de l'inéquation $A(x) \le 0$: on utilise la forme factorisée et on réalise un tableau de signes :

$$3 + x = 0$$
 pour $x = -3$; et $-7x + 4 = 0$ pour $x = \frac{4}{7}$.

La solution est $S =]-\infty; -3] \cup [\frac{4}{7}; +\infty[$.

x	- ∞	- 3		4	+∞
				7	
3+x	_	0	+		+
-7x + 4	+		+	0	_
A(x)	_	0	+	0	_

Résolution de l'inéquation A(x) > 12: on utilise la forme développée et on réalise un tableau de signes :

$$A(x) = -7x^2 - 17x + 12 > 12$$
 équivaut à

$$-7x^2 - 17x > 0$$
 équivaut à $x(-7x - 17) > 0$.

$$x = 0$$
 pour $x = 0$; et $-7x - 17 = 0$ pour $x = \frac{-17}{7}$.

La solution est S =] $\frac{-17}{7}$; 0 [.

x	- ∞	$\frac{-17}{7}$		0	+∞
x	_		_	0	+
-7x - 17	_	0	_		_
$-7x^2-11x$	_	0	+	0	_

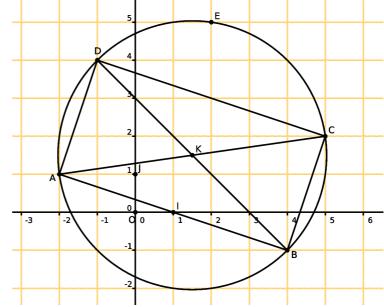
EXERCICE 2 : On considère le repère orthonormé (O, I, J) du plan et les points A(-2; 1), B(4; -1) et C(5; 2). La figure correspondante :

1. Les coordonnées de K milieu de [AC] sont données par :

$$x_{\rm K} = \frac{x_{\rm A} + x_{\rm C}}{2} = \frac{-2 + 5}{2} = \frac{3}{2}$$
 et

$$y_{K} = \frac{y_{A} + y_{C}}{2} = \frac{1+2}{2} = \frac{3}{2}$$
;

donc K(
$$\frac{3}{2}$$
; $\frac{3}{2}$).



2. Le point K est le milieu de la diagonale

[BD], donc
$$x_{\rm K} = \frac{x_{\rm B} + x_{\rm D}}{2} = \frac{4 + x_{\rm D}}{2}$$
,

d'où
$$x_D = 2 x_K - 4 = -1$$

et
$$y_{K} = \frac{y_{B} + y_{D}}{2} = \frac{-1 + y_{D}}{2}$$
,

d'où $y_D = 2 y_K + 1 = 4$; donc D(-1; 4).

- $\begin{array}{l} {\rm 3.\ AB} = \sqrt{(x_{\rm B} x_{\rm A})^2 + (y_{\rm B} y_{\rm A})^2} = \sqrt{(4 (-2))^2 + (-1 1)^2} = \sqrt{(6)^2 + (-2)^2} = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10} \ ; \\ {\rm AC} = \sqrt{(x_{\rm C} x_{\rm A})^2 + (y_{\rm C} y_{\rm A})^2} = \sqrt{(5 (-2))^2 + (2 1)^2} = \sqrt{7^2 + 1^2} = \sqrt{49 + 1} = \sqrt{50} = 5\sqrt{2} \ ; \\ {\rm BC} = \sqrt{(x_{\rm C} x_{\rm B})^2 + (y_{\rm C} y_{\rm B})^2} = \sqrt{(5 4)^2 + (2 (-1))^2} = \sqrt{(1)^2 + (3)^2} = \sqrt{1 + 9} = \sqrt{10} \ . \\ \end{array}$
- 4. On a $AB^2 + AC^2 = 40 + 10 = 50 = BC^2$, donc d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en B.
- 5. Le parallélogramme ABCD est alors un rectangle puisque deux côtés adjacents forment un angle droit.

6. Pour savoir si le point E(2 ; 5) appartient au cercle de centre K passant par A, on compare la distance KE au rayon du cercle qui est KA. On a AK =
$$\sqrt{(x_{\rm K}-x_{\rm A})^2+(y_{\rm K}-y_{\rm A})^2} = \sqrt{(\frac{3}{2}-(-2))^2+(\frac{3}{2}-1)^2} = \sqrt{(\frac{7}{2})^2+(\frac{1}{2})^2} = \sqrt{\frac{49}{4}+\frac{1}{4}} = \sqrt{\frac{50}{4}} = \frac{5\sqrt{2}}{2}$$
. Et EK = $\sqrt{(x_{\rm K}-x_{\rm E})^2+(y_{\rm K}-y_{\rm E})^2} = \sqrt{(\frac{3}{2}-2)^2+(\frac{3}{2}-5)^2} = \sqrt{(\frac{1}{2}-1)^2+(\frac{1}{2}-1)^2} = \sqrt{\frac{50}{4}} = {\rm AK}$. Donc le point E est sur le cercle.

- 7. La fonction affine f dont la droite (AB) est la représentation graphique est de la forme f(x) = ax + b avec $a = \frac{y_B y_A}{x_B x_A} = \frac{-1 1}{4 (-2)} = \frac{-2}{6} = \frac{-1}{3}$. Et b vérifie l'équation $f(x_A) = ax_A + b$, soit $1 = \frac{-1}{3} \times (-2) + b$, soit $b = 1 \frac{2}{3} = \frac{1}{3}$. Ainsi, la fonction f s'écrit $f(x) = \frac{-1}{3}x + \frac{1}{3} = \frac{-x + 1}{3}$.

 8. Le point F(22; -7) est sur la droite (AB) si ses coordonnées vérifient $f(x_F) = ax_F + b$:
- $ax_F + b = \frac{-22+1}{3} = \frac{-21}{3} = -7 = f(x_F)$. Donc le point F appartient à la droite (AB).