EXERCICE 1

Partie 1 – Etude d'un algorithme

х	0	6	20	35	40
Expression de	-x+17	-x+17	1,2x-5	34 - 0.1x	34 - 0.1x
<i>f(x)</i> utilisée					
Coût en euros	17	11	19	30,5	30

Partie 2 – Etude d'une fonction

1) Représentation graphique

$$f(x) = -x + 17 \quad \text{si} \quad 0 \le x < 10$$

$$\begin{array}{c|ccccc}
x & 0 & 5 & 9 \\
\hline
f(x) & 17 & 12 & 8 \\
\end{array}$$

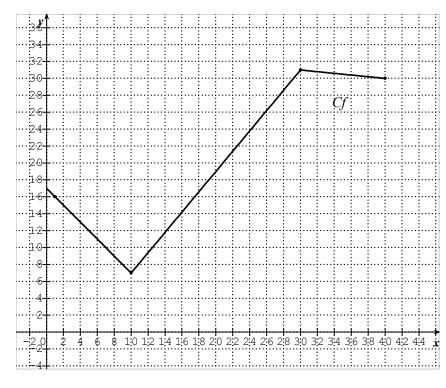
$$f(x) = -x + 17$$
 si $0 \le x < 10$ $f(x) = 1, 2x - 5$ si $10 \le x < 30$ $f(x) = 34 - 0, 1x$ si $30 \le x \le 40$

x	10	20	29
f(x)	7	19	29,8

$$f(x) = 34 - 0.1x \quad \text{si} \quad 30 \le x \le 40$$

x	30	35	40	
f(x)	31	30,5	30	

2) Le coût minimum est de 7 € et il est obtenu pour la fabrication de 10 000 calculatrices



$$f(30) = -0.9 \times 30 + b \Leftrightarrow 27 = -27 + b \Leftrightarrow 27 + 27 = b \Leftrightarrow 54 = b$$

3) b) Algorithme

Variables x, y sont des réels positifs Début Lire x **Si** $0 \le x < 30$ Alors y prend la valeur 12+0.5xsinon v prend la valeur -0.9x + 54Fin Si Afficher $\langle f(x) = \rangle$ Afficher y Fin

3) a) f est une fonction affine donc l'expression de f(x) est de la forme f(x) = ax + b

$$a = \frac{f(30) - f(40)}{30 - 40} = \frac{27 - 18}{-10} = \frac{-9}{10} = -0.9$$

On a donc $f(x) = -0.9x + 54$

EXERCICE 2

1) Faux Si
$$x^2 \ge 1$$
 alors $x \ge 1$ ou $x \le -1$ $S =]-\infty; -1] \cup [1; +\infty[$

2) Vrai
$$3\sqrt{2} \times \sqrt{2} - 1 = 3 \times 2 - 1 = 5$$

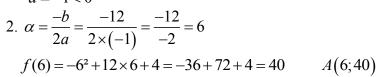
3) Vrai Les deux droites ont le même coefficient directeur :
$$-\frac{1}{3}$$
 $y = \frac{1-2x}{6} = \frac{1}{6} - \frac{2x}{6} = \frac{1}{6} - \frac{1x}{3} = -\frac{1}{3}x + \frac{1}{6}$

4) Faux
$$\alpha = \frac{-18}{2 \times (-3)} = \frac{-18}{-6} = 3$$
 $f(3) = -3 \times 3^2 + 18 \times 3 - 1 = -3 \times 9 + 54 - 1 = 26 \neq -25$

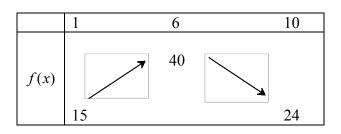
5) Faux
$$A = 4 - (1 - 2x)^2 = 2^2 - (1 - 2x)^2 = (2 - (1 - 2x))(2 + 1 - 2x) = (2 - 1 + 2x)(3 - 2x) = (1 + 2x)(3 - 2x)$$

Partie 1 – Etude de la fonction

1. Pour tout $x \in [1;10]$ f est telle que $f(x) = -x^2 + 12x + 4$ Cf est une parabole orientée vers le bas (\cap) car a = -1 < 0



La forme canonique de f est $f(x) = -(x-6)^2 + 40$



On a a = -1 b = 12 c = 4

- 3. La fonction f est croissante sur [1;6] et décroissante sur [6;10]
- 4. Le prix moyen maximal du Go est 40 euros obtenu pour x = 6 Go
- 5. Le prix moyen minimal du Go est 15 euros obtenu pour x = 15 Go

Partie 2 - Résolution d'une inéquation

1.
$$f(x) \ge 31 \Leftrightarrow -x^2 + 12x + 4 \ge 31 \Leftrightarrow -x^2 + 12x + 4 - 31 \ge 0 \Leftrightarrow -x^2 + 12x - 27 \ge 0$$

2.
$$(3-x)(x-9) = 3x-27-x^2+9x = -x^2+12x-27$$

3.

X	$-\infty$	3		9	+∞
3-x	+	0	-		-
x-9	-		-	0	+
(3-x)(x-9)	-	0	+	0	-

$$3-x=0 \Leftrightarrow 3=x$$

 $x-9=0 \Leftrightarrow x=9$

4. Résolution de l'inéquation $(3-x)(x-9) \ge 0$:

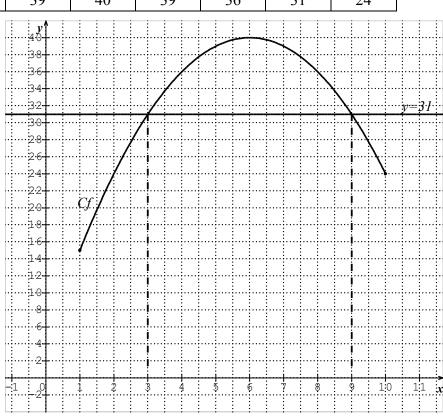
D'après la question 2 : $f(x) \ge 31 \Leftrightarrow -x^2 + 12x - 27 \ge 0 \Leftrightarrow (3-x)(x-9) \ge 0$ donc S = [3,9]

Le prix moyen du Go est supérieur ou égal à 31 euros pour une capacité de stockage de 3 Go à 9 Go.

Partie 3 - Représentation graphique

1.										
х	1	2	3	4	5	6	7	8	9	10
f(x)	15	24	31	36	39	40	39	36	31	24

- 2. graphique (ci-contre)
- 3. On lit graphiquement que le prix moyen est supérieur ou égal à 31 euros pour une capacité de stockage comprise entre 3 et 9 Go.



EXERCICE 4:

1)
$$x_K = \frac{x_A + x_C}{2} = \frac{2+6}{2} = 4$$
 $y_K = \frac{y_A + y_C}{2} = \frac{0+5}{2} = 2,5$ Donc K (4; 2,5)
 $x_P = \frac{x_A + x_B}{2} = \frac{2+8}{2} = 5$ $y_P = \frac{y_A + y_B}{2} = \frac{0+0}{2} = 0$ Donc: P(5; 0)

2) $x_B \neq x_K$ donc la droite (BK) a une équation de la forme : y = mx + p avec pour coefficient directeur

$$m = \frac{y_K - y_B}{x_K - x_B} = \frac{\frac{5}{2} - 0}{4 - 8} = -\frac{\frac{5}{2}}{4} = -\frac{5}{8} \quad (ou - 0, 625)$$

L'équation de (BK) est donc $y = -\frac{5}{8}x + p$ Déterminons p : $B(8;0) \in (BK)$ donc : $0 = -\frac{5}{8} \times 8 + p$ donc : p = 5

L'équation de (BK) est : $y = -\frac{5}{8}x + 5$

- 3) $5 \times x_C 25 = 5 \times 6 25 = 5 = y_C$ donc le point C appartient à Δ . $5 \times x_P - 25 = 5 \times 5 - 25 = 0 = y_P$ donc le point P appartient à Δ .
- 4) a) Les droites Δ et (BK) ont des coefficients directeurs différents $(-\frac{5}{8} \neq 5)$ donc elles sont bien sécantes en un point G dont les coordonnées (x; y) sont solution du système formé par les deux équations des droites :

$$\begin{cases} y = 5x - 25 \\ y = -\frac{5}{8}x + 5 \end{cases}$$
 On détermine x en résolvant : $5x - 25 = -\frac{5}{8}x + 5$

C'est-à-dire :
$$5x + \frac{5}{8}x = 25 + 5 \iff \frac{45}{8}x = 30 \iff x = 30 \times \frac{8}{45} = \frac{15 \times 2 \times 8}{15 \times 3} = \frac{16}{3}$$

Calcul de y:
$$y = 5x - 25 = 5 \times \frac{16}{3} - 25 = \frac{80 - 75}{3} = \frac{5}{3}$$
 donc: $G\left(\frac{16}{3}, \frac{5}{3}\right)$

b) D'après la question 3) on sait que la droite Δ est en fait la droite (CP). Or P étant le milieu de [AB], (CP) est la médiane issue de C, dans le triangle ABC. De plus, K étant le milieu de [AC], (BK) est la médiane issue de B dans le triangle ABC. Donc le point G, intersection de (CP) et (BK), est le centre de gravité du triangle ABC.

c)
$$PG = \sqrt{(x_G - x_P)^2 + (y_G - y_P)^2} = \sqrt{\left(\frac{16}{3} - 5\right)^2 + \left(\frac{5}{3} - 0\right)^2}$$

$$PG = \sqrt{\left(\frac{1}{3}\right)^2 + \left(\frac{5}{3}\right)^2} = \sqrt{\frac{1}{9} + \frac{25}{9}} = \sqrt{\frac{26}{9}} = \frac{\sqrt{26}}{\sqrt{9}} = \frac{1}{3}\sqrt{26}$$

d) Iere façon : On sait que le centre de gravité d'un triangle est situé sur chaque médiane aux deux tiers en partant du

sommet, donc :
$$CG = \frac{2}{3}CP$$
 C'est-à-dire aussi : $PG = \frac{1}{3}PC$ ou encore : $PC = 3PG$

2eme façon : calcul de PC :

$$PC = \sqrt{(x_C - x_P)^2 + (y_C - y_P)^2} = \sqrt{(6-5)^2 + (5-0)^2} = \sqrt{1+25} = \sqrt{26}$$

On a donc bien : $3PG = 3 \times \frac{1}{3}\sqrt{26} = \sqrt{26} = PC$

5) a)
$$PE = \sqrt{(x_E - x_P)^2 + (y_E - y_P)^2} = \sqrt{(3 - 5)^2 + (2 - 0)^2} = \sqrt{8} = 2\sqrt{2}$$

 $EC = \sqrt{(x_C - x_E)^2 + (y_C - y_E)^2} = \sqrt{(6 - 3)^2 + (5 - 2)^2} = \sqrt{18} = 3\sqrt{2}$

b) On d'une part : $PC^2 = 26$ et d'autre part : $PE^2 + EC^2 = \sqrt{8}^2 + \sqrt{18}^2 = 8 + 18 = 26$ donc, puisque $PE^2 + EC^2 = PC^2$ on peut en déduire, d'après la réciproque du théorème de Pythagore, que <u>le triangle PEC est rectangle en E</u>. Son aire est donc égale à : $\frac{1}{2} \times PE \times EC = \frac{1}{2} \times 2\sqrt{2} \times 3\sqrt{2} = 6$

c) calcul de l'aire du triangle ABC : $\frac{1}{2} \times AB \times h$ où h est la hauteur issue de C. Or puisque les points A et B sont situés sur l'axe des abscisses du repère et que les coordonnées de C sont (6 ; 5), on en déduit que h = 5. Donc : $aire(ABC) = \frac{1}{2} \times AB \times h = \frac{1}{2} \times 6 \times 5 = 15$ alors : $\frac{2}{5} aire(ABC) = \frac{2}{5} \times 15 = 2 \times 3 = 6 = aire(PEC)$

Donc l'affirmation est vraie.

