Le but de ces trois exercices est de calculer des aires comprises entre des axes, des droites et des courbes représentatives de fonctions simples.

Exercice 1: Aire sous une droite:

On se place dans le repère (O; I, J), et a est un réel strictement positif.

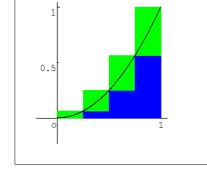
- a) Calculer l'aire A(a) comprise entre la droite d'équation y = x + 1, les droites d'équation x = 0 et x = a et l'axe des abscisses en fonction de a.
- b) Déterminer la primitive F de f définie par f(x) = x + 1 qui s'annule en 0.
- c) Comparer F(a) et A(a) pour tout réel a > 0.

Exercice 2: Aire sous la parabole:

Dans le repère (O ; I, J), on cherche à calculer l'aire A comprise entre la parabole représentative de la fonction carrée, les droites d'équation x=0 et x=1 et l'axe des abscisses (dessin ci-contre).

Pour cela, on découpe le segment [OI] en n segments de même longueur (n est un entier naturel non nul) et on cherche un encadrement de l'aire A par une somme d'aires de rectangles.

Ces rectangles ont pour base $\frac{1}{n}$ et pour hauteur $\left(\frac{k}{n}\right)^2$, le nombre k étant



compris entre 1 et n.

- 1. Déterminer cet encadrement, en fonction de n .
- 2. Quelle est la limite de ces aires lorsque n tend vers $+\infty$?
- 3. Quelle est la valeur exacte de l'aire A?
- 4. Déterminer la primitive F de f définie par $f(x) = x^2$ qui s'annule en 0.
- 5. Comparer F(1) et A.

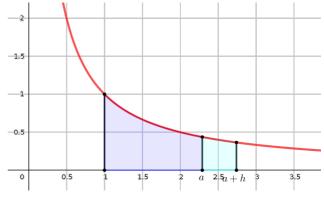
Exercice 3: Aire sous l'hyperbole:

Pour un nombre réel a>1, on cherche à calculer l'aire $\mathrm{S}(a)$ comprise sous l'hyperbole représentative de la fonction

inverse entre les droites d'équation x = 1 et x = a (dessin ci-contre).

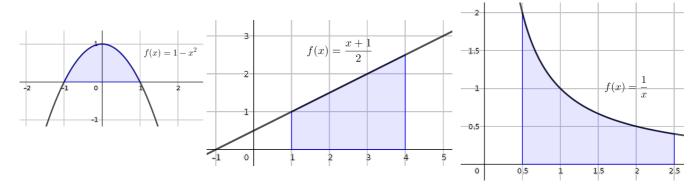
Pour cela, on considère un réel h > 0, et on encadre S(a + h) - S(a) par l'aire de deux rectangles.

- 1. Déterminer cet encadrement de S(a + h) S(a).
- 2. En déduire un encadrement de $\frac{S(a+h)-S(a)}{h}$.
- 3. Montrer que la fonction S est dérivable sur $[1; +\infty]$.
- 4. Déterminer sa fonction dérivée.
- 5. Étudier alors la fonction f définie sur $[1; +\infty[$ par $f(x) = S(x) \ln x$.
- 6. Déterminer alors l'aire S(a).
- 7. Refaire l'étude pour a strictement compris entre 0 et 1.



Exercice 4 : Aire sous une courbe:

En utilisant les résultats précédents, calculer les aires grisées sur les figures suivantes :



EXERCICE 1

 $1.\ En$ utilisant des calculs d'aires, déterminer les intégrales suivantes :

$$A = \int_{0}^{2} (x+2)dx \quad ; \qquad B = \int_{-1}^{1} \frac{2x+5}{3}dx \quad ; \quad C = \int_{0}^{5} (-x+1)dx \quad ; \qquad D = \int_{-2}^{3} \frac{3x-1}{2}dx \quad ;$$

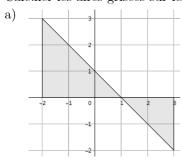
$$E = \int_{-4}^{8} \left(\frac{1}{2}x + 1\right) dx \; ; \; F = \int_{-3}^{10} (4 - x) dx \; ; \; G = \int_{-2}^{3} |x| dx \; .$$

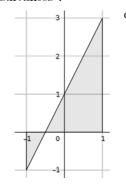
2. a) Montrer que la courbe représentative de la fonction f définie sur [-4;4] par $f(x)=\sqrt{16-x^2}$ est un demi-cercle que l'on représentera.

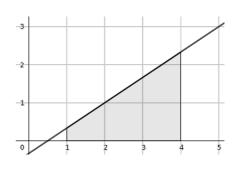
b) Déterminer I =
$$\int_{-4}^{4} \sqrt{16-x^2} dx$$
; $J = \int_{-4}^{0} \sqrt{16-x^2} dx$.

EXERCICE 2

Calculer les aires grisées sur les figures suivantes :







EXERCICE 3

On considère les courbes (C) et (C') représentatives des fonctions carrée et racine carrée dans le plan rapporté à un repère orthonormé (O ; \vec{i} , \vec{j}).

1. Sachant que
$$\int_{0}^{1} x^{2} dx = \frac{1}{3}$$
, déterminer $\int_{0}^{1} \sqrt{x} dx$;

on pourra utiliser un axe de symétrie des courbes (C) et (C').

2. Dans le plan, on définit le carré OIKJ, tels que $\overrightarrow{OI} = \overrightarrow{i}$ et $\overrightarrow{OJ} = \overrightarrow{j}$.

Montrer que les deux courbes (C) et (C') découpent le carré OIKJ en trois surfaces de même aire.

3. Déterminer l'aire délimitée par la droite (OK) et la courbe (C).

EXERCICE 4

1. Déterminer le réel a pour que $\int_{0}^{1} (ax+1) dx = 3$.

2. Déterminer le réel b pour que $\int_{-1}^{3} (2x+b) dx = 0$.

EXERCICE 5

Pour tout réel x, on désigne par $\operatorname{Ent}(x)$ la partie entière de x. En utilisant des calculs d'aires, déterminer les intégrales suivantes :

$$\mathrm{I}_0 = \int\limits_0^1 \mathrm{Ent}(x) dx \; \; ; \; \mathrm{I}_1 = \int\limits_1^2 \mathrm{Ent}(x) dx \; \; ; \; \mathrm{I}_2 = \int\limits_2^3 \mathrm{Ent}(x) dx \; \; ; \; \mathrm{pour \; tout \; entier \; naturel} \; n, \; \mathrm{I}_n = \int\limits_n^{n+1} \mathrm{Ent}(x) dx \; \; .$$

En déduire $\sum_{k=0}^{k=n} \mathbf{I}_k = \int_0^n \operatorname{Ent}(x) dx$.

EXERCICES

EXERCICE 6 : Calculer les valeurs moyennes des fonctions suivantes sur l'intervalle indiqué :

a)
$$f(x) = x^3 - 3x^2 \text{ sur } [-1; 2];$$
 b) $f(x) = \frac{4x}{x^2 + 2} \text{ sur } [-2; 2];$

c)
$$f(x) = 2x^3 - 4x^2 + 1$$
 sur $[-3; 2]$; d) $f(x) = \frac{8x}{x^2 + 6}$ sur $[-2; 2]$; e) $f(x) = e^{-x}$ sur $[0; 1]$.

EXERCICE 7 : En utilisant des primitives, déterminer les intégrales suivantes :

$$\begin{array}{lll} {\rm A} = & \int\limits_0^2 {\left({{x^2} \! - \! 3x \! + \! 2} \right)} dx \; ; & {\rm B} = & \int\limits_{ - 1}^3 {t\left({{t^2} \! - \! 3} \right)} dt \; ; & {\rm C} = & \int\limits_{ - 1}^4 {\left({5\,{u^2} \! - \! 2\,u} \right)} {\left({3\,{u \! + \! 2}} \right)} du \; ; \\ {\rm D} = & \int\limits_0^{ \ln \left(2 \right)} {{e^{2 \! - \! 3\,x}}} dx \; ; & {\rm E} = & \int\limits_0^2 {\left({{x^2} \! - \! 3\,x \! + \! 2} \right)} dx \; ; & {\rm F} = & \int\limits_1^{\frac{{e^2}}} {\frac{{\ln \left(x \right)}}{x}} dx \; ; \\ {\rm G} = & \int\limits_3^5 {\frac{1}{{\left({t \! - \! 1} \right)} {\left({t \! - \! 2} \right)}} dx \; {\rm après \; avoir \; \acute{e}crit} \; \; \frac{1}{{\left({t \! - \! 1} \right)} {\left({t \! - \! 2} \right)}} = \frac{{a}}{{t \! - \! 1}} \; + \; \frac{{b}}{{t \! - \! 2}} \; {\rm avec \; } a \; {\rm et \; } b \; {\rm r\acute{e}els.} \\ \end{array}$$

$$\mathrm{H} = \int\limits_0^1 rac{1}{x+1} \, dx \; ; \qquad \mathrm{I} = \int\limits_0^2 rac{2\,x-1}{x^2-x+1} \, dx \; \; ; \; \mathrm{J} = \int\limits_{-rac{\pi}{4}}^{rac{\pi}{2}} rac{\sin t}{2+\cos t} \, dt \; \; ; \; \; \mathrm{K} = \int\limits_0^5 \, x e^{-x^2+1} \, dx \; .$$

 $\underline{\text{EXERCICE 8}}$: En utilisant des primitives, déterminer les intégrales suivantes :

$$A = \int_{0}^{2} (x^{3} - 3x^{2} + 2x) dx ; \qquad B = \int_{-1}^{3} (1 - \frac{t}{4}) dt ; \qquad C = \int_{-1}^{4} (5u^{2} + u)(3u - 1) du ;$$

$$D = \int_{0}^{\ln(2)} e^{2-3x} dx ; \qquad E = \int_{0}^{2} (x^{2} - 3x + 2) dx ; \qquad F = \int_{1}^{e^{2}} \frac{\ln(x)}{x} dx ;$$

$$G = \int_{4}^{6} \frac{1}{(2t - 1)(3t - 2)} dx \text{ après avoir écrit } \frac{1}{(2t - 1)(3t - 2)} = \frac{a}{2t - 1} + \frac{b}{3t - 2} \text{ avec } a \text{ et } b \text{ réels.}$$

$$H = \int_{0}^{1} \frac{1}{x + 1} dx ;$$

EXERCICE 9:

1. Montrer que la fonction
$$f$$
 définie sur $[0;+\infty[$ par $f(x)=\frac{2x+5}{x+1}]$ peut s'écrire $f(x)=2+\frac{3}{x+1}$; en déduire $\int\limits_0^2 f(x)\,dx$.

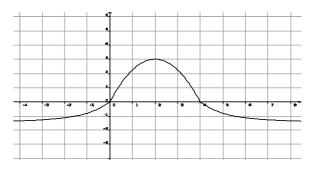
2. Montrer que la fonction
$$f$$
 définie sur \mathbb{R} par $f(x) = \frac{3e^x + 8}{e^x + 4}$ peut s'écrire $f(x) = 2 + \frac{e^x}{e^x + 4}$; en déduire $\int_{-1}^{0} f(x) dx$.

<u>EXERCICE 10 :</u> On considère la fonction f définie et continue sur $[-3\ ; 8]$ dont la représentation est donnée cicontre.

On considère alors la fonction F définie sur [-3; 8] par

$$\mathrm{F}(x) = \int\limits_0^x f(t)\,dt \; .$$

- 1. Déterminer F(0).
- 2. Déterminer le signe de F sur [0; 4] et sur [-3; 0].
- 3. Montrer que $6 \le F(4) \le 12$.
- 4. Étudier les variations de F sur [-3; 8].



EXERCICES TERMINALE spécialité

EXERCICE 16:

A. On considère l'équation différentielle (E) : $y' = y - 2y^2$.

On admet que les solutions de cette équation sont des fonctions strictement positives.

- 1. Trouver une équation différentielle vérifiée par $z = \frac{1}{y}$.
- 2. En déduire les fonctions z , puis les solutions de l'équation (E).
- 3. Trouver la fonction g solution de (E) et telle que $g(0) = \frac{1}{3}$.
- B. On considère la fonction $\ f$ définie sur $\mathbb R$

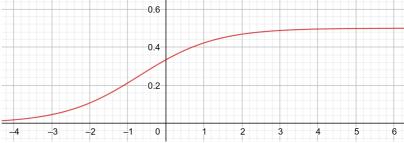
par
$$f(x) = \frac{1}{2 + e^{-x}}$$
, C sa courbe

représentative donnée ci-conter et pour tout

réel a>0, l'intégrale $\mathrm{I}(a)=\int\limits_{0}^{\ln a}f\left(t\right) dt$.

1. Montrer que la fonction f peut s'écrire

$$f(x) = \frac{1}{2} \times \frac{2e^x}{1+2e^x}$$
.



- 2. En déduire l'expression de I(a) en fonction de a.
- 3. Déterminer la valeur de a tel que $I(a) = \ln 3$.
- 4. Interpréter graphiquement le nombre I(a) et hachurer sur le graphique I(e).

EXERCICE 17 : On considère la fonction f définie sur $[0; +\infty[$ par $f(x) = \frac{\ln(x+3)}{x+3}$.

1. Montrer que f est dérivable sur $[0; +\infty[$.

Étudier le signe de sa fonction dérivée f', sa limite éventuelle en $+\infty$, et dresser le tableau de ses variations.

- 2. On définit la suite (u_n) par son terme général $u_n = \int_{x_n}^{x_{n+1}} f(x) dx$.
- a. Justifier que, si $n \le x \le n+1$, alors $f(n+1) \le f(x) \le f(n)$.
- b. Montrer, sans chercher à calculer u_n , que, pour tout entier naturel n, $f(n+1) \le u_n \le f(n)$.
- c. En déduire que la suite (u_n) est convergente et déterminer sa limite.
- 3. Soit F la fonction définie sur $[0; +\infty[$ par F $(x) = [\ln(x+3)]^2$.
- a. Justifier la dérivabilité sur $[0; +\infty]$ de la fonction F et déterminer, pour tout réel positif x, le nombre F'(x).
- b. On pose, pour tout entier naturel $n, I_n = \int\limits_0^n f(x) dx$. Calculer I_n .
- 4. On pose, pour tout entier naturel n, $S_n = u_0^0 + u_1 + \cdots + u_{n-1}$.

Calculer S_n . La suite (S_n) est-elle convergente?

EXERCICE 18:

On considère la fonction f définie sur $]0; +\infty[$ par $f(x) = (x-1)\ln(x)$ et C sa courbe représentative dans un repère orthonormé.

- 1. a) Montrer que f est strictement croissante sur $[1; +\infty[$.
- b) En déduire que f(x) est positif sur $[1; +\infty[$.
- 2. A l'aide d'une intégration par parties, calculer, en unités d'aires, l'aire A du domaine plan délimité par la courbe C, les droites d'équation x = 1, x = 2 et l'axe des abscisses.
- 3. On pose I = $\int_{1}^{2} \frac{2x-2}{2x+1} dx$.
- a) Déterminer deux réels a et b tels que pour tout réel $x \neq \frac{-1}{2}$, $\frac{2x-2}{2x+1} = a + \frac{b}{2x+1}$.
- b) Calculer I. Comparer A et I.