Baccalauréat S Nouvelle-Calédonie novembre 2004

L'utilisation de la calculatrice est autorisée.

Le candidat doit traiter les QUATRE exercices.

Exercice 1 5 points

Commun à tous les candidats

Dans le plan complexe rapporté à un repère orthonormal direct $(0, \overrightarrow{u}, \overrightarrow{v})$, on considère l'application f du plan dans lui-même qui, à tout point M d'affixe z, associe le point M' d'affixe z' telle que :

$$z' = z^2 - 4z.$$

- 1. Soient A et B les points d'affixes $z_A = 1 i$ et $z_B = 3 + i$.
 - **a.** Calculer les affixes des points A' et B' images des points A et B par f.
 - **b.** On suppose que deux points ont la même image par f. Démontrer qu'ils sont confondus ou que l'un est l'image de l'autre par une symétrie centrale que l'on précisera.
- **2.** Soit I le point d'affixe -3.
 - **a.** Démontrer que OMIM' est un parallélogramme si et seulement si $z^2 3z + 3 = 0$.
 - **b.** Résoudre l'équation $z^2 3z + 3 = 0$.
- **a.** Exprimer (z' + 4) en fonction de (z 2). En déduire une relation entre |z' + 4| et |z 2| puis entre $\arg(z' + 4)$ et $\arg(z 2)$.
 - **b.** On considère les points J et K d'affixes respectives $z_J = 2$ et $z_K = -4$. Démontrer que tous les points M du cercle ($\mathscr C$) de centre J et de rayon 2 ont leur image M' sur un même cercle que l'on déterminera.
 - **c.** Soit E le point d'affixe $z_E = -4 3i$. Donner la forme trigonométrique de $(z_E + 4)$ et à l'aide du **3. a.** démontrer qu'il existe deux points dont l'image par f est le point E. Préciser sous forme algébrique l'affixe de ces deux points.

EXERCICE 2 5 points

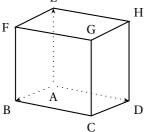
Commun à tous les candidats

Cet exercice est un questionnaire à choix multiples (Q.C.M.)

Les réponses à cet exercice sont à inscrire sur la feuille jointe en annexe (page 4/4). Toute réponse ambiguë sera considérée comme une absence de réponse.

Pour chacune des cinq questions une ou plusieurs réponses sont exactes. Le candidat doit inscrire V (vrai) ou F (faux) dans la case correspondante.

Aucune justification n'est demandée. Pour chaque question, 3 réponses correctes rapportent 1 point et 2 réponses correctes rapportent $\frac{1}{2}$ point.



Soit ABDEFGH un cube de côté 1. On choisit le repère orthonormal $\left(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE}\right)$ On appelle I et J les milieux respectifs des segments [EF] et [FG].

L est le barycentre de $\{(A, 1); (B, 3)\}$.

Soit (π) le plan d'équation 4x - 4y + 3z - 3 = 0.

1. Les coordonnées de L sont :

a.
$$\left(\frac{1}{4}; 0; 0\right)$$
 b. $\left(\frac{3}{4}; 0; 0\right)$ **c.** $\left(\frac{2}{3}; 0; 0\right)$

- **2.** Le plan (π) est le plan
 - **a.** (GLE)
- **b.** (LEJ)
- **c.** (GFA)
- 3. Le plan parallèle au plan (π) passant par I coupe la droite (FB) en M de coor-
- **b.** $\left(1; 0; \frac{1}{5}\right)$ **c.** $\left(1; 0; \frac{1}{3}\right)$
- 4. a. Les droites (EL) et (FB) sont sécantes en un point N qui est le symétrique de M par rapport à B.
 - b. Les droites (EL) et (IM) sont parallèles.
 - c. Les droites (EL) et (IM) sont sécantes.
- 5. Le volume du tétraèdre FIJM est:

 - **a.** $\frac{1}{36}$ **b.** $\frac{1}{48}$ **c.** $\frac{1}{24}$

EXERCICE 3 5 points

Commun à tous les candidats

On considère la fonction f définie sur \mathbb{R} par

$$f(x) = \frac{x}{e^x - x}$$

On note (\mathscr{C}) sa courbe représentative dans le plan rapporté au repère orthogonal $[0, \overline{\iota}, \overline{\jmath}]$, l'unité graphique est 2 cm sur l'axe des abscisses et 5 cm sur l'axe des ordonnées.

Partie A

Soit *g* la fonction définie sur \mathbb{R} par $g(x) = e^x - x - 1$.

- 1. Étudier les variations de la fonction g sur \mathbb{R} . En déduire le signe de g.
- **2.** Justifier que pour tout x, $(e^x x)$ est strictement positif.

Partie B

- **a.** Calculer les limites de la fonction f en $+\infty$ et en $-\infty$.
 - b. Interpréter graphiquement tes résultats précédents.
- **a.** Calculer f'(x), f' désignant la fonction dérivée de f.
 - **b.** Étudier le sens de variations de *f* puis dresser son tableau de variations.
- **a.** Déterminer une équation de la tangente (T) à la courbe (\mathscr{C}) au point d'abscisse 0.
 - **b.** À l'aide de la **partie A**, étudier la position de la courbe (\mathscr{C}) par rapport à la droite (T).
- **4.** Tracer la droite (T) les asymptotes et la courbe (\mathscr{C}).

5 points **EXERCICE 4**

Pour les candidats n'ayant pas suivi l'enseignement de spécialité

On considère les deux suites (u_n) et (v_n) définies, pour tout entier naturel n, par :

$$\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{u_n + v_n}{2} \end{cases} \begin{cases} v_0 = 4 \\ v_{n+1} = \frac{u_{n+1} + v_n}{2} \end{cases}$$

- 1. Calculer u_1 , v_1 , u_2 et v_2 .
- **2.** Soit la suite (w_n) définie pour tout entier naturel n par : $w_n = v_n u_n$.
 - **a.** Montrer que la suite (w_n) est une suite géométrique de raison $\frac{1}{4}$.
 - **b.** Exprimer w_n en fonction de n et préciser la limite de la suite (w_n) .
- **3.** Après avoir étudié le sens de variation de suites (u_n) et (v_n) , démontrer que ces deux suites sont adjacentes. Que peut-on en déduire?
- **4.** On considère à présent la suite (t_n) définie, pour tout entier naturel n, par $t_n = \frac{u_n + 2v_n}{3}$.
 - **a.** Démontrer que la suite (t_n) est constante.
 - **b.** En déduire la limite des suites (u_n) et (v_n) .

EXERCICE 4 5 points

Pour les candidats ayant suivi l'enseignement de spécialité

Dans cet exercice, a et b désignent des entiers strictement positifs.

1. a. Démontrer que s'il existe deux entiers relatifs u et v tels que

$$au + bv = 1$$

alors les nombres a et b sont premiers entre eux.

- **b.** En déduire que si $(a^2 + ab b^2)^2 = 1$, alors a et b sont premiers entre eux.
- **2.** On se propose de déterminer les couples d'entiers strictement positifs (a;b) tels que $(a^2 + ab b^2)^2 = 1$. Un tel couple sera appelé solution.
 - **a.** Déterminer a lorsque a = b.
 - **b.** Vérifier que (1;1), (2;3) et (5;8) sont trois solutions particulières.
 - **c.** Montrer que si (a; b) est solution et si $a \ne b$, alors $a^2 b^2 < 0$.
- **3. a.** Montrer que si (x; y) est une solution différente de (1; 1) alors (y-x; x) et (y; y+x) sont aussi des solutions.
 - **b.** Déduire de **2. b.** trois nouvelles solutions
- **4.** On considère la suite de nombres entiers strictement positifs $(a_n)_{n \in \mathbb{N}}$) définie par $a_0 = a_1 = 1$ et pour tout entier $n, n \ge 0$, $a_{n+2} = a_{n+1} + a_n$.

Démontrer que pour tout entier $n \ge 0$, $(a_n; a_{n+1})$ est solution.

En déduire que les nombres a_n et a_{n+1} sont premiers entre eux.