Le plan complexe est rapporté à un repère orthonormé (O; \vec{u} , \vec{v}).

Soit λ un nombre complexe non nul et différent de 1.

On définit, pour tout entier naturel n, la suite (z_n) de nombres complexes par : $z_0 = 0$ et $z_{n+1} = \lambda z_n + i$. On note M_n l'image de z_n .

- 1. Calculer z_1 , z_2 , z_3 en fonction de λ .
- 2. Démontrer que pour tout entier naturel $n, z_n = \frac{\lambda^n 1}{\lambda 1}$ i.
- 3. Étude du cas $\lambda = i$.
- a) Calculer z₄.
- b) Pour tout entier naturel n, exprimer z_{n+4} en fonction de z_n .
- c) Représenter les points M_0 , M_1 , M_2 , M_3 , M_4 dans le repère (O; \vec{u} , \vec{v}).
- 4. Étude du cas $\lambda = 1 + i$.

Représenter les points M_0 , M_1 , M_2 , M_3 , M_4 , M_5 dans le repère (O; \vec{u} , \vec{v}).

- 5. Étude du cas $\lambda = \frac{2}{3} (1 + i)$.
- a) Représenter les points M_0 , M_1 , M_2 , M_3 , M_4 , M_5 dans le repère (O ; \vec{u} , \vec{v}).
- b) A l'aide d'un algorithme, déterminer un entier n tel que $z_n = -1 + i$.
- c) On admet que la suite (z_n) converge dans ce cas. Déterminer la forme algébrique de sa limite.