EXERCICE 1:

On considère la fonction f définie et dérivable sur l'ensemble IR des nombres réels par $f(x) = x + 1 + \frac{x}{e^x}$.

On note C sa courbe représentative dans un repère orthonormé (O; \vec{i} , \vec{j}).

1. Soit g la fonction définie et dérivable sur l'ensemble IR par $g(x) = 1 - x + e^x$.

Dresser, en le justifiant, le tableau de variations de la fonction g sur IR.

En déduire le signe de g(x).

- 2. Déterminer la limite de f en $-\infty$ puis la limite de f en $+\infty$.
- 3. On appelle f' la dérivée de la fonction f sur IR.

Démontrer que, pour tout réel x, $f'(x) = e^{-x}g(x)$.

- 4. En déduire le tableau de variation de la fonction f sur \mathbb{R} .
- 5. Démontrer que l'équation f(x) = 0 admet une unique solution réelle α sur \mathbb{R} .

Démontrer que $-1 < \alpha < 0$.

- 6. a. Démontrer que la droite T d'équation y = 2x + 1 est tangente à la courbe C au point d'abscisse 0.
- b. Étudier la position relative de la courbe C et de la droite T.

EXERCICE 2:

La fonction f est définie sur IR par $f(x) = (x^2 - x + 1)e^x$. On note f', $f'' = f^{(2)}$, $f^{(3)}$ les dérivées successives de f.

- 1. Calculer pour tout réel x, f' et f''.
- 2. a) Démontrer par récurrence que pour tout entier naturel n supérieur ou égal à $1, f^{(n)}(x) = (x^2 + a_n x + b_n)e^x$ avec $a_{n+1} = a_n + 2$ et $b_{n+1} = a_n + b_n$.
- b) Déduisez-en que a_n et b_n sont des entiers relatifs.
- 3. On se propose dans cette question d'exprimer a_n et b_n en fonction de n.
- a) Vérifier que la suite a_n est une suite arithmétique. Déduisez-en a_n en fonction de n pour tout n supérieur ou égal à 1.
- b) Vérifier que pour tout n supérieur ou égal à $1:b_n=a_{n-1}+a_{n-2}+...+a_2+a_1$.

Déduisez-en b_n en fonction de n pour tout n supérieur ou égal à 1.