EXERCICE 1 (2 points)

Déterminer les fonctions dérivées des fonctions suivantes :

a)
$$f(x) = \frac{e^x - x}{x^2}$$
;
b) $f(x) = e^{2x^2 - 5x + 1}$;

b)
$$f(x) = e^{2x^2-5x+1}$$

EXERCICE 2 (4 points)

Calculer les limites suivantes en détaillant les calculs :

a)
$$\lim_{x \to +\infty} \frac{e^x - x}{x^2}$$
;


b)
$$\lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

EXERCICE 3 (6 points)

On considère un carré ABCD tel que AB = 12 cm.

On découpe à chaque coin du carré, quatre carrés de côté x comme sur la figure ci-contre et en pliant suivant les pointillés, on réalise une boîte ouverte de forme parallélépipédique.

- 1. Montrer que le volume de la boîte est égal à $V(x) = 4x^3 48x^2 + 144x$.
- 2. Quel est l'ensemble de définition de la fonction V ?
- 3. Déterminer la dérivée de cette fonction et étudier les variations de V sur son ensemble de définition.
- 4. En déduire quel est le volume maximal de la boîte et pour quelle valeur de xil est atteint.

EXERCICE 4 (8 points)

On considère la fonction f définie sur \mathbb{R} par $f(x)=(2x+4)\mathrm{e}^{-x}$.

- 1. Déterminer les limites de cette fonction aux bornes de son ensemble de définition.
- 2. Préciser s'il existe des asymptotes à la courbe représentative de f.
- 3. Déterminer la fonction dérivée de cette fonction f et étudier les variations de cette fonction.
- 4. Donner le tableau de variation complet de f.
- 5. a) Montrer que l'équation f(x) = 1 admet deux solutions α et β dans \mathbb{R} .
- b) Donner une valeur approchée à 10^{-2} près de chacune des solution α et β .