Cours Terminale S PGCD et PPCM

1. Plus grand commun diviseur

1.1 Diviseurs communs à deux entiers positifs

Pour tout entier naturel n, on note D(n) l'ensemble des diviseurs de n.

On note D(a; b) l'ensemble des diviseurs communs à a et b, c'est-à-dire $D(a; b) = D(a) \cap D(b)$.

Le plus grand élément de D(a; b) est appelé PGCD de a et b, noté PGCD(a; b).

Exemple: Le PGCD de 24 et 36 est 12; celui de 25 et 12 est 1.

Propriétés:

Pour tout entier naturel n, D(n; 0) = D(n). En effet, $D(n; 0) = D(n) \cap \mathbb{N} = D(n)$.

 $PGCD(a; b) \le a$ et $PGCD(a; b) \le b$. En effet, les diviseurs de a sont inférieurs à a, de même pour b.

Si *b* divise *a*, alors PGCD(a; b) = b. En effet, Si b divise a, $b \in D(a; b)$.

PGCD(a; b) = PGCD(b; a).

PGCD(a; 1) = 1.

PGCD(a; a) = a.

Pour tout k entier naturel non nul, $PGCD(ka; kb) = k \times PGCD(a; b)$. Démonstration à l'aide de l'algorithme d'Euclide, vu juste après.

1.2 Recherche du PGCD : Algorithme d'Euclide:

a) Propriété: Soit a = bq + r la division euclidienne de a par b. Alors D(a; b) = D(b; r).

Si r = 0, alors PGCD(a; b) = b.

Si $r \neq 0$, alors PGCD(a; b) = PGCD(b; r).

Démonstration: Soit c un diviseur commun de a et de b. Il existe deux entiers a' et b' tels que a = ca' et b = cb'.

Si a = bq + r est la division euclidienne de a par b, alors r = a - bq = ca' - cb'q = c(a' - b'q), et c divise r, donc est un diviseur commun de b et de r. Ainsi $D(a; b) \subset D(b; r)$.

Réciproquement, soit d un diviseur commun de b et de r. Il existe deux entiers b' et r' tels que b = db' et r = dr'.

Si a = bq + r est la division euclidienne de a par b, alors a = db'q + dr' = d(b'q + r'), et d divise a, donc est un diviseur commun de a et de b. Ainsi $D(b; r) \subset D(a; b)$.

Finalement, D(a; b) = D(b; r), et PGCD(a; b) = PGCD(b; r).

b) Algorithme d'Euclide:

Pour rechercher le PGCD de a et de b, on effectue les divisions euclidiennes successives :

a = bq + r avec $0 \le r < b$; puis $b = rq_1 + r_1$ avec $0 \le r_1 < r$; puis $r = r_1 q_2 + r_2$ avec $0 \le r_2 < r_1$; etc... jusqu'à ce que le reste soit nul. Alors le PGCD de a et de b est le dernier reste non nul.

Exemple: On cherche PGCD(48; 63): On a successivement:

 $63 = 1 \times 48 + 15$, puis $48 = 3 \times 15 + 3$, puis $15 = 5 \times 3 + 0$. Donc PGCD(48; 63) = 3.

c) Propriété: D(a; b) = D(g) où g est le PGCD de a et de b.

2. Nombres premiers entre eux

Définition: Soient *a* et *b* deux entiers naturels non nuls.

On dit que a et b sont premiers entre eux si PGCD(a; b) = 1.

Propriété: Soit a un entier naturel non nul. Si p est un nombre premier qui ne divise pas a, alors a et p sont premiers entre eux.

Soient a et b deux entiers naturels non nuls et d leur PGCD. Alors $\frac{a}{d}$ et $\frac{b}{d}$ sont premiers entre eux.

3. Théorème de Bezout :

Théorème: Soient *a* et *b* deux entiers relatifs non nuls.

a et b sont premiers entre eux si et seulement si il existe des entiers relatifs u et v tels que au + bv = 1.

Démonstration: Supposons a et b sont premiers entre eux; considérons l'ensemble E des nombres au + bv avec u et v entiers relatifs. E contient des entiers naturels non nuls : si a l'est, E contient $a = a \times 1 + b \times 0$. si a est négatif, E contient $-a = a \times (-1) + b \times 0$. Donc E contient un plus petit entier naturel $m = au_1 + bv_1$. Montrons que m

divise a et b: La division de a par m donne $a = mq + r = (au_1 + bv_1)q + r$, avec $0 \le r < m$.

Or $r = (au_1 + bv_1)q - a = a(u_1q - 1) + b(v_1q)$ de la forme au + bv. Comme m est le plus petit entier naturel de la forme au + bv, alors r = 0. Donc m divise a. De la même manière, m divise a. Or a et a sont premiers entre eux, donc a = 1.

Supposons qu'il existe des entiers relatifs u et v tels que au + bv = 1. Le pgcd(a; b) = g divise a et b et tout nombre de la forme au + bv. Donc g = 1, et a et b sont premiers entre eux.

Corollaire: Soient a et b deux entiers relatifs et d leur PGCD. Alors il existe des entiers relatifs u et v tels que au + bv = d.

4. Théorème de Gauss :

Théorème: Soient a et b deux entiers relatifs non nuls et c un entier relatif. Si a divise bc et si a est premier avec b alors a divise c.

Démonstration: Comme a et b sont premiers entre eux, il existe des entiers relatifs u et v tels que au + bv = 1. Donc auc + bvc = c. Or a divise auc et divise bc, donc a divise auc + bvc = c.

Corollaires:

- \triangleright Si un entier relatif c est divisible par deux entiers a et b premiers entre eux, alors c est divisible par le produit ab.
- > Si un nombre premier p divise le produit ab, alors il divise au moins l'un des facteurs a et b.

5. Plus petit commun multiple

2.1 Multiples communs à deux entiers positifs

Pour tout entier naturel n, on note M(n) l'ensemble des multiples de n. $M(n) = \{k, k = nq \text{ avec } q \in \mathbb{Z} \}$.

On note M(a; b) l'ensemble des multiples communs à a et b, c'est-à-dire $M(a; b) = M(a) \cap M(b)$.

Le plus petit élément de M(a; b) est appelé PPCM de a et b, noté PPCM(a; b).

Exemple: Le PPCM de 24 et 36 est 72; celui de 25 et 12 est 300.

2.2 Propriétés : Le PGCD(a; b) divise le PPCM(a; b).

 $PGCD(a; b) \times PPCM(a; b) = ab.$

Pour tout *k* entier naturel non nul, $PPCM(ka; kb) = k \times PPCM(a; b)$.

M(a; b) = M(PPCM(a; b)).