### 1. Approximation d'une courbe par la méthode d'Euler

On considère une fonction f dérivable sur un intervalle I, et C sa courbe représentative dans un repère du plan.

On suppose connu un point  $M(x_0; y_0)$  de la courbe C. On sait que pour h non nul proche de 0, l'approximation affine de la fonction f donne :  $f(x_0 + h) = f(x_0) + hf'(x_0)$ . Soit  $x_1 = x_0 + h$  et  $y_1 = f(x_0) + hf'(x_0) = y_0 + hf'(x_0)$ .

On obtient un point  $M_1(x_1; y_1)$ .

Soit  $x_2 = x_1 + h$  et  $y_2 = f(x_1) + hf'(x_1) = y_1 + hf'(x_1)$ . On obtient un point  $M_2(x_2; y_2)$ , et ainsi de suite.

On trace alors les segments  $[MM_1]$ ,  $[M_1 M_2]$ ,  $[M_2 M_3]$ , etc... qui donne une approximation de la courbe C représentative de f. Plus h est proche de 0 et plus l'approximation est bonne.

### 2. L'équation différentielle f' = kf

a) Résultat préliminaire : On considère une fonction f dérivable sur  $\mathbb{R}$  et un nombre réel k tels que, pour tout réel x, f' (x) = kf(x) et f(0) = 1. Alors la fonction f ne s'annule pas sur  $\mathbb{R}$ .

*Démonstration*: On considère la fonction g définie par g(x) = f(x) f(-x). Cette fonction g est dérivable sur comme produit et composée de fonctions dérivables sur IR.

On a 
$$g'(x) = f'(x) f(-x) + f(x) (-f'(-x)) =$$

$$kf(x) f(-x) + f(x) (-kf(-x)) = 0.$$

Donc la fonction g est constante sur IR égale à  $g(0) = f(0) f(0) = 1^2 = 1$ .

Donc, pour tout réel x, g(x) = f(x) f(-x) = 1, et  $f(x) \neq 0$ .



*Théorème* : il existe une unique fonction f dérivable sur telle que f' = f et f(0) = 1.

Cette fonction s'appelle la fonction exponentielle, notée exp.

Démonstration : L'existence de la fonction est conjecturée par la méthode d'Euler qui permet de construire une courbe solution de l'équation différentielle f' = f (voir figures ci-contre).

On peut toutefois démontré l'unicité:

on considère la fonction g solution de l'équation différentielle f'=f et

tel que 
$$g(0) = 1$$
. Soit  $h$  la fonction définie par  $h(x) = \frac{g(x)}{f(x)}$ .

Cette fonction h est dérivable sur IR comme quotient de fonctions dérivables sur IR et  $f(x) \neq 0$  d'après b) i).

On a h'(x) = 
$$\frac{g'(x)f(x) - g(x)f'(x)}{f(x)^2} = \frac{g(x)f(x) - g(x)f(x)}{f(x)^2} = 0.$$

Donc la fonction h est constante sur IR égale à h(0) = 1.

Ainsi, pour tout réel x,  $\frac{g(x)}{f(x)} = 1$  et donc g(x) = f(x). La fonction exp est donc unique.

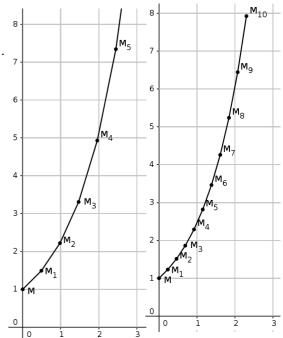


*Théorème* : il existe une unique fonction f dérivable sur telle que f' = kf et f(0) = 1.

Cette fonction est définie sur par  $\exp(kx)$ .

*Démonstration*: Existence: En prenant  $f(x) = \exp(kx)$ , cette fonction est dérivable sur IR, comme composée de fonctions dérivables sur IR et  $f(0) = \exp(0) = 1$ . Et  $f'(x) = k \exp(kx)$  (en utilisant la dérivée des fonctions composées: (uov)'(x) = u'(v(x)) v'(x)). Cette fonction est bien solution de l'équation f' = kf et f(0) = 1.

Unicité: Démonstration similaire à celle de la partie 2 en considérant une fonction g solution de l'équation différentielle f' = kf et telle que g(0) = 1 et la fonction h définie par  $h(x) = \frac{g(x)}{f(x)}$ .



#### 3. Propriétés de la fonction exponentielle

Propriété 1: La fonction exponentielle transforme une somme en produit:

Pour tous réels x et y,  $\exp(x + y) = \exp(x) \exp(y)$ .

Démonstration : Soit g la fonction définie sur  $\mathbb{R}$  par  $g(x) = \frac{\exp(x+y)}{\exp(x)}$  pour y réel fixé. (On sait que  $\exp(x) \neq 0$  sur  $\mathbb{R}$ ).

La fonction g est dérivable sur et  $g'(x) = \frac{\exp(x+y) \times \exp(x) - \exp(x+y) \times \exp(x)}{\exp(x)^2} = 0$ ; donc la fonction g est constante

sur IR, et égale à 
$$g(0) = \exp(y)$$
. D'où  $\frac{\exp(x+y)}{\exp(x)} = \exp(y)$ .

Ainsi, pour tous réels x et y,  $\exp(x + y) = \exp(x) \exp(y)$ .

Propriété 2: En prenant y = -x, il vient  $\exp(x + y) = \exp(x - x) = \exp(x) \exp(-x)$ ,

donc 
$$1 = \exp(x) \exp(-x)$$
 et ainsi  $\exp(-x) = \frac{1}{\exp(x)}$ .

Propriété 3: De plus, 
$$\exp(x - y) = \exp(x + (-y)) = \exp(x) \exp(-y) = \frac{\exp(x)}{\exp(y)}$$
.

Notation : La fonction exponentielle a les mêmes propriétés que celles portant sur les puissances entières.

On décide de noter  $\exp(x) = e^x$ .

La calculatrice nous donne  $\exp(1) = e \simeq 2,7182821828...$ 

**Résumé** : Pour tous réels x et y, et tout entier relatif n :

tout entier relatif 
$$n$$
:
$$e^0 = 1 e^x$$

$$e^{x+y} = e^x e^y \qquad (e^x)^n = e^{xn}$$

$$e^{-x} = \frac{1}{e^x} \qquad \qquad e^{x-y} = \frac{e^x}{e^y}$$

0

x

f(x)

 $-\infty$ 

## 4. Étude de la fonction exponentielle

<u>a) Variations</u>: D'après l'étude précédente, la fonction exponentielle est dérivable sur IR et exp'(x) = exp(x) et exp(0) = 1. D'après le paragraphe b)i), la fonction ne s'annule pas, et étant continue puisque dérivable, elle ne change pas de signe; de plus comme exp(0) = 1, elle est toujours positive, donc la fonction exponentielle est strictement croissante sur IR.

Tableau de variations:

b) Limites: Propriétés: 
$$\lim_{x \to +\infty} e^x = +\infty$$
 et  $\lim_{x \to -\infty} e^x = 0$ .

*Démonstration*: Considérons la fonction g définie sur IR par  $g(x) = e^x - x$ .

Cette fonction est dérivable comme somme de fonctions dérivables sur IR.

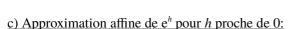
Sa dérivée est  $g'(x) = e^x - 1$  qui est positive sur  $[0; +\infty]$  et négative sur

]  $-\infty$ ; 0]. La fonction g admet donc un minimum en x = 0 qui vaut

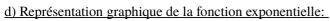
g(0) = 1. Donc pour tout réel x,  $g(x) \ge 1$ ; ainsi,  $e^x - x \ge 1$  et  $e^x \ge x + 1$ .

En utilisant un théorème sur les comparaisons de limites,  $\lim_{x \to +\infty} x+1 = +\infty$  et  $\lim_{x \to +\infty} e^x = +\infty$ .

Pour tout réel x,  $e^{-x} = \frac{1}{e^x}$  et  $e^x = \frac{1}{e^{-x}}$ . Lorsque x tend vers  $-\infty$ , -x tend vers  $+\infty$ , donc  $e^{-x}$  tend vers  $+\infty$ , et  $\frac{1}{e^{-x}}$  tend vers 0. Ainsi,  $\lim_{x \to -\infty} e^x = 0$ .



L'approximation affine de  $e^h$  pour h proche de 0 est donnée par  $e^h = e^0 + h \exp'(0) = 1 + h$ .



Tangentes à la courbe représentative de exp:

Au point d'abscisse 0: l'équation de la tangente est

$$y = \exp'(0)(x - 0) + \exp(0) = x + 1.$$

Au point d'abscisse 1: l'équation de la tangente est

$$y = \exp'(1)(x - 1) + \exp(1) = ex - e + e = ex$$
.

Cette tangente passe par l'origine du repère.

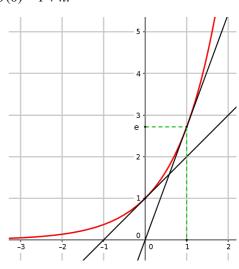
Position de la courbe par rapport à ces tangentes:

Il s'agit de montrer que la courbe est toujours au-dessus de ses tangentes.

Pour cela, considérons l'équation de la tangente T à la

courbe C de la fonction exponentielle au point d'abscisse a :

$$y = \exp'(a)(x - a) + \exp(a) = e^{a}(x - a + 1).$$



Pour étudier la position de C par rapport à T, il suffit d'étudier le signe de la fonction f définie sur IR par  $f(x) = e^x - e^a (x - a + 1)$ .

Cette fonction est dérivable comme somme de fonctions dérivables sur et

 $f'(x) = e^x - e^a$ . Cette dérivée s'annule en x = a et comme la fonction exponentielle est strictement croissante sur  $\mathbb{R}$ , alors f est décroissante sur  $]-\infty$ ; a] et croissante sur  $[a; +\infty]$ . Elle admet donc un minimum en x = a qui vaut  $f(a) = e^a - e^a$  (a - a + 1) = 0. Donc la fonction f est positive sur  $\mathbb{R}$ ; ainsi, pour tout réel x,  $e^x \ge e^a$  (x - a + 1). Donc la courbe C est toujours au-dessus des tangentes T.

Une telle fonction est appelée une fonction convexe.

#### 4. Dérivée de e<sup>u</sup> où *u* est une fonction dérivable sur un intervalle I.

La fonction  $e^u$  est dérivable sur I et sa dérivée est u'  $e^{u}$ . Il suffit d'utiliser la formule de dérivation des fonctions composées :  $(v \circ u(x))' = (v'(u(x)) u'(x))$ .

Exemple: Déterminer les variations de la fonction f définie par  $f(x) = \exp(x^2 - 2x) = e^{x^2 - 2x}$ .

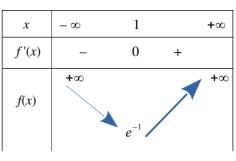
Cette fonction est dérivable comme composée de fonctions dérivables sur IR, et f'(x) = (2x - 2)  $e^{x^2 - 2x}$ . On sait que, pour tout réel x,  $e^x$  est strictement positif, donc  $e^{x^2 - 2x} > 0$ . Le signe de la dérivée est donné par le signe de 2x - 2 qui s'annule en x = 1.

D'où le tableau de variations de cette fonction :

# 5. Quelques limites à connaître:

Propriétés: a) 
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$
; b)  $\lim_{x \to -\infty} x e^x = 0$ ; c)  $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$ .

*Démonstration*: a) On a vu en d) ii) que pour tout réel x,  $e^x \ge x + 1 > x$ . D'où, pour x > 0,  $e^{\frac{x}{2}} > \frac{x}{2}$ .



Pour x > 0, on élève au carré :  $\left(e^{\frac{x}{2}}\right)^2 > \left(\frac{x}{2}\right)^2$  qui donne  $e^x > \frac{x^2}{4}$ , d'où  $\frac{e^x}{x} > \frac{x}{4}$ . En utilisant un théorème sur les comparaisons de limites, comme  $\lim_{x \to -\infty} \frac{x}{4} = +\infty$ , alors  $\lim_{x \to -\infty} \frac{e^x}{x} = +\infty$ .

- b) Posons X = -x; lorsque x tend vers  $-\infty$ , X tend vers  $+\infty$ ,  $\lim_{x \to -\infty} x e^x = \lim_{X \to +\infty} -X e^{-X} = \lim_{X \to +\infty} \frac{-X}{e^X} = 0$  d'après le a).
- c) On utilise le nombre dérivé de la fonction exponentielle en 0 :  $\lim_{x \to 0} \frac{e^x e^0}{x 0} = \lim_{x \to 0} \frac{e^x 1}{x} = (e^0)' = 1$ .