DEVOIR MAISON N° 1

TERMINALE L

EXERCICE 1:

On place les unes sur les autres des boules B_1 , B_2 , ..., B_n dont le diamètre diminue de moitié d'une boule à l'autre. La boule B_1 a un diamètre $r_1 = 1$ mètre.

- a) Quel est le rayon r_2 de la boule B_2 ? Quel est le rayon r_{10} de la boule B_{10} ?
- b) Quelle est la hauteur totale de la pile formée des 10 premières boules ?
- c) Quel est le volume V₁ de la boule B₁? Et les volumes V₂ et V₃ des boules B₂ et B₃?
- d) La suite (V_n) est-elle arithmétique ou géométrique ? Si oui pour l'un des deux, préciser sa raison et son premier terme.
- e) En déduire le volume total des 10 premières boules.

EXERCICE 2:

Pierre opère un placement dans sa banque en versant sur un compte 200 euros, chaque premier janvier à partir du 01/01/2005. La banque rémunère ce compte au taux annuel de $4\,\%$.

On note u_0 le montant initial du compte, donc $u_0 = 200$ et u_n , le montant au 1^{er} janvier de l'année (2005 + n), n étant un entier naturel.

- 1. Calculer u_1 , u_2 et u_3 . On arrondira au centime d'euro.
- **2.** Exprimer u_{n+1} en fonction de u_n .
- 3. On définit une nouvelle suite (v_n) en posant, pour tout entier naturel n, $v_n = u_n + 5000$.
- a) Calculer les trois premiers termes de la suite (v_n) .
- b) Prouver que la suite (v_n) est géométrique et préciser sa raison.
- c) Exprimer alors v_n en fonction de n puis en déduire que $u_n = 5200 \times (1,04)^n 5000$.
- 4. Combien d'années Pierre devra-t-il attendre, pour disposer d'au moins 3 000 euros sur ce compte ?
- **5.** Au bout de combien de temps le montant annuel des intérêts dépassera-t-il la somme déposée annuellement sur le compte (200 euros) ?