DEVOIR MAISON N° 5

TERMINALE S 4

EXERCICE 1

On considère le nombre complexe z = x + iy et $z^2 = a + ib$ où x, y, a, b sont des réels.

- 1. Montrer que, si |z| = 1, on a $x^2 = \frac{1+a}{2}$ et $y^2 = \frac{1-a}{2}$.
- 2. On suppose que $arg(z) = \frac{\pi}{8}$. Déterminer la forme algébrique de z^2 .
- 3. Déterminer alors les valeurs exactes de $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$.

EXERCICE 2

Soit α un réel différent de $\frac{\pi}{2} + k\pi$ pour tout $k \in \mathbb{Z}$ et $t = \tan \alpha$.

- 1. Déterminer la forme exponentielle de $z = \frac{1+it}{1-it}$.
- 2. Quelle est la forme algébrique de z ?
- 3. En déduire que $\cos(2\alpha) = \frac{1-t^2}{1+t^2}$ et $\sin(2\alpha) = \frac{2t}{1+t^2}$.

EXERCICE 3

On considère la fonction f définie par $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ et C sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- 1. Montrer que cette fonction est définie sur IR.
- 2. Montrer que pour tout réel x, $f(x) = \frac{e^{2x} 1}{e^{2x} + 1}$.
- 3. En déduire les limites de la fonction f en $+\infty$ et en $-\infty$. Que peut-on en déduire pour la courbe C?
- 4. a) Montrer que $f'(x) = 1 f(x)^2$.
- b) Étudier les variations de la fonction f.
- 5. a) Discuter suivant les valeurs du réel m du nombre de solutions de l'équation f(x) = m.
- b) Résoudre l'équation $f(x) = \frac{1}{2}$.
- 6. Montrer que pour tous réels a et b, $f(a+b) = \frac{f(a)+f(b)}{1+f(a)f(b)}$.
- 7. Montrer que la bijection réciproque de la fonction f est la fonction g définie sur]-1; 1[par $g(x)=\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$.