EXERCICE 1

On considère le nombre complexe z = x + iy et $z^2 = a + ib$ où x, y, a, b sont des réels.

1.
$$z^2 = (x + iy)^2 = x^2 + 2ixy - y^2 = a + ib$$
, donc $a = x^2 - y^2$ et $b = 2xy$. Si $|z| = 1$, alors $x^2 + y^2 = 1$, donc $y^2 = 1 - x^2$ et $a = x^2 - (1 - x^2) = 2x^2 - 1$. Ainsi $x^2 = \frac{1+a}{2}$ et $y^2 = 1 - x^2 = \frac{1-a}{2}$.

2. On suppose que
$$|z| = 1$$
 et $\arg(z) = \frac{\pi}{8}$. Dans ce cas, $z = 1(\cos(\frac{\pi}{8}) + i\sin(\frac{\pi}{8})) = e^{i\frac{\pi}{8}}$,

d'où
$$z^2 = e^{i\frac{\pi}{4}} = \cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$
.

3. On a donc
$$a = b = \frac{\sqrt{2}}{2}$$
. Donc $x = \cos \frac{\pi}{8} = \sqrt{\frac{1+a}{2}} = \sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{2+\sqrt{2}}{4}} = \frac{\sqrt{2+\sqrt{2}}}{2}$ et

$$y = \sin\frac{\pi}{8} = \sqrt{\frac{1-a}{2}} = \sqrt{\frac{1-\frac{\sqrt{2}}{2}}{2}} = \frac{\sqrt{2-\sqrt{2}}}{2}$$

EXERCICE 2

Soit α un réel différent de $\frac{\pi}{2} + k\pi$ pour tout $k \in \mathbb{Z}$ et $t = \tan \alpha$.

1. La forme exponentielle de
$$z = \frac{1+it}{1-it} = \frac{1+i\tan\alpha}{1-i\tan\alpha} = \frac{1+i\frac{\sin\alpha}{\cos\alpha}}{1-i\frac{\sin\alpha}{\cos\alpha}} = \frac{\cos\alpha+i\sin\alpha}{\cos\alpha-i\sin\alpha} = \frac{e^{i\alpha}}{e^{-i\alpha}} = e^{2i\alpha}$$
.

2. La forme algébrique de
$$z = \frac{1+it}{1-it} = \frac{(1+it)(1+it)}{(1-it)(1+it)} = \frac{1+2it-t^2}{1+t^2} = \frac{1-t^2}{1+t^2} + i\frac{2t}{1+t^2}$$
.

3. La forme trigonométrique de
$$z$$
 est $\cos(2\alpha) + i\sin(2\alpha)$ donc on en déduit que $\cos(2\alpha) = \frac{1-t^2}{1+t^2}$ et $\sin(2\alpha) = \frac{2t}{1+t^2}$.

EXERCICE 3

On considère la fonction f définie par $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ et C sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$.

1. Pour tout réel x, $e^x > 0$, donc $e^x + e^{-x} > 0$, le dénominateur de f ne s'annule pas, donc la fonction f est définie sur \mathbb{R} .

2. Pour tout réel
$$x$$
, $f(x) = \frac{e^x - 1/e^x}{e^x + 1/e^x} = \frac{(e^{2x} - 1)/e^x}{(e^{2x} + 1)/e^x} = \frac{e^{2x} - 1}{e^{2x} + 1}$.

3. On sait que
$$\lim_{x \to +\infty} e^x = +\infty$$
 donc $\lim_{x \to +\infty} e^{2x} = +\infty$. En posant $X = e^{2x}$, $f(x) = \frac{X-1}{X+1}$, donc $\lim_{x \to +\infty} f(x) = \lim_{X \to +\infty} \frac{X-1}{X+1}$

= 1. On sait que
$$\lim_{x \to -\infty} e^x = 0$$
 donc $\lim_{x \to -\infty} e^{2x} = 0$, donc $\lim_{x \to +\infty} f(x) = -1$. On en déduit que la courbe C admet deux asymptotes horizontales, une en $+\infty$ d'équation $y = 1$ et l'autre en $-\infty$ d'équation $y = -1$.

4. a) La fonction f est dérivable sur \mathbb{R} comme somme et quotient de fonctions qui le sont.

$$f'(x) = \frac{2e^{2x}(e^{2x}+1)-(e^{2x}-1)2e^{2x}}{(e^{2x}+1)^2} = \frac{4e^{2x}}{(e^{2x}+1)^2} \text{ et } 1 - f(x)^2 = 1 - \left(\frac{e^{2x}-1}{e^{2x}+1}\right)^2 = \frac{(e^{2x}+1)^2-(e^{2x}-1)^2}{(e^{2x}+1)^2} = \frac{4e^{2x}}{(e^{2x}+1)^2}.$$

b) Comme $f'(x) = \frac{4e^{2x}}{(e^{2x}+1)^2}$ qui est strictement positif, la fonction f est strictement croissante sur \mathbb{R} .

5. a) La fonction f réalise une bijection de \mathbb{R} dans l'intervalle]-1;1[. Donc pour tout réel $m\in]-1;1[$, l'équation f(x)=m a une unique solution. Pour $m\notin]-1;1[$, il n'y a aucune solution à l'équation f(x)=m.

b) Comme
$$-1 < \frac{1}{2} < 1$$
, l'équation $f(x) = \frac{1}{2}$ a une unique solution : $\frac{e^{2x} - 1}{e^{2x} + 1} = \frac{1}{2}$ équivaut à $2(e^{2x} - 1) = e^{2x} + 1$

équivaut à
$$e^{2x} = 3$$
 équivaut à $\ln(e^{2x}) = \ln 3$ équivaut à $2x = \ln 3$ équivaut à $x = \frac{1}{2} \ln 3 = \ln \sqrt{3}$.

6. Pour tous réels
$$a$$
 et b ,
$$\frac{f(a)+f(b)}{1+f(a)f(b)} = \frac{\frac{e^{2a}-1}{e^{2a}+1} + \frac{e^{2b}-1}{e^{2b}+1}}{1+\frac{e^{2a}-1}{e^{2a}+1} + \frac{e^{2b}-1}{e^{2b}+1}} = \frac{\frac{(e^{2a}-1)(e^{2b}+1)+(e^{2a}+1)(e^{2b}-1)}{(e^{2a}+1)(e^{2b}+1)+(e^{2a}-1)(e^{2b}-1)}}{\frac{(e^{2a}-1)(e^{2b}+1)+(e^{2a}-1)(e^{2b}-1)}{(e^{2a}+1)(e^{2b}+1)+(e^{2a}-1)(e^{2b}-1)}} = \frac{1}{2} \frac{e^{2a-1}+e^{2b}-1}{e^{2a}+1} = \frac{1}{2} \frac{(e^{2a}-1)(e^{2b}+1)+(e^{2a}+1)(e^{2b}-1)}{(e^{2a}+1)(e^{2b}+1)+(e^{2a}-1)(e^{2b}-1)}} = \frac{1}{2} \frac{1}{2} \frac{e^{2a-1}+e^{2b}-1}{e^{2a}+1} = \frac{1}{2} \frac{e^{2a-1}+e^{2b}-1}{e^{2a}+1} = f(a+b)}{(e^{2a}+1)(e^{2b}+1)+(e^{2a}+1)(e^{2b}-1)} = \frac{1}{2} \frac{1}{2} \frac{e^{2a-1}+e^{2b}-1}{e^{2a}+1} = \frac{1}{2} \frac{e^{2a-1}+e^{2b}-1}{e^{2a}+1} = f(a+b)}{(e^{2a}+1)(e^{2b}+1)+(e^{2a}+1)(e^{2b}-1)} = \frac{1}{2} \frac{1}{2} \frac{e^{2a-1}+e^{2b}-1}{e^{2a}+1} = \frac{1}{2} \frac{1}{$$

7. La fonction g est la bijection réciproque de la fonction f si pour tout réel x, gof(x) = x, et si pour tout réel x de]-1; 1[, $f \circ g(x) = x$.

Or, pour tout réel
$$x$$
, $gof(x) = \frac{1}{2} \ln \left(\frac{1+f(x)}{1-f(x)} \right) = \frac{1}{2} \ln \left(\frac{1+\frac{e^{2x}-1}{e^{2x}+1}}{1-\frac{e^{2x}-1}{e^{2x}+1}} \right) = \frac{1}{2} \ln \left(\frac{\frac{2e^{2x}}{e^{2x}+1}}{\frac{2}{e^{2x}+1}} \right) = \frac{1}{2} \ln \left(\frac{2e^{2x}}{2} \right) = \frac{1}{2} \ln e^{2x} = \frac{2x}{2} = x.$

Et pour tout réel
$$x$$
 de $]-1; 1[, fog(x)] = \frac{e^{2g(x)}-1}{e^{2g(x)}+1} = \frac{e^{\ln\left(\frac{1+x}{1-x}\right)}-1}{e^{\ln\left(\frac{1+x}{1-x}\right)}+1} = \frac{\frac{1+x}{1-x}-1}{\frac{1+x}{1-x}} = \frac{\frac{1+x}{1-x}-1}{\frac{1+x}{1-x}} = \frac{\frac{1+x-1+x}{1-x}}{\frac{1+x+1-x}{1-x}} = \frac{2x}{2} = x.$

Donc la fonction g est la bijection réciproque de la fonction f. Représentation graphique de f et de g:

