EXERCICE 1:

On a
$$f'(x) = \frac{e^x - e^{-x}}{2}$$
, d'où $1 + f'(x)^2 = 1 + \left(\frac{e^x - e^{-x}}{2}\right)^2 = \frac{4 + e^{2x} - 2 + e^{-2x}}{4} = \frac{e^{2x} + 2 + e^{-2x}}{4} = \left(\frac{e^x + e^{-x}}{2}\right)^2 = f(x)^2$.

La longueur de la chaînette entre les points d'abscisses -1 et 1 est donc égale à L = $\int_{-1}^{1} \sqrt{1 + (f'(x))^2} dx$ =

 $\int_{0}^{1} \sqrt{f(x)^{2}} dx = \int_{0}^{1} |f(x)| dx$. Or, la fonction f est strictement positive sur \mathbb{R} comme somme de fonctions qui le sont,

$$\operatorname{donc} L = \int_{-1}^{1} f(x) dx = \frac{1}{2} \int_{-1}^{1} (e^{x} + e^{-x}) dx = \frac{1}{2} \left[e^{x} - e^{-x} \right]_{-1}^{1} = \frac{1}{2} (e^{1} - e^{-1} - (e^{-1} - e^{1})) = e - \frac{1}{e}.$$

EXERCICE 2

1. Pour tout réel
$$x$$
 de $[2; +\infty[$, $\frac{a}{x} + \frac{b}{x-1} + \frac{c}{x+3} = \frac{a}{x} + \frac{b}{x-1} + \frac{a(x-1)(x+3) + bx(x+3) + cx(x-1)}{x(x+1)(x+3)} = \frac{a}{x} + \frac{b}{x-1} + \frac{a}{x} + \frac{b}{x-1} + \frac{a}{x} + \frac{a}{x} + \frac{b}{x-1} + \frac{a}{x} + \frac{a}{x$

$$\frac{(a+b+c)x^2+(2a+3b-c)x-3a}{x^3+2x^2-3x} = \frac{4x^2+13x-9}{x^3+2x^2-3x}$$
, et par identification des numérateurs, on obtient

a + b + c = 4, 2a + 3b - c = 13 et -3a = -9. On trouve a = 3, et b + c = 1, 3b - c = 7. On trouve b = 2 et c = -1.

Ainsi,
$$f(x) = \frac{3}{x} + \frac{2}{x-1} + \frac{-1}{x+3}$$
. Sur $[2; +\infty[, \frac{3}{x} > 0, \frac{2}{x-1} > 0 \text{ et } \frac{1}{x+3} > 0.$

$$2. I = \int_{2}^{3} f(t) dt = \int_{2}^{3} \left(\frac{3}{t} + \frac{2}{t-1} - \frac{1}{t+3} \right) dt = \left[3 \ln t + 2 \ln (t-1) - \ln(t+3) \right]_{2}^{3} = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 2 - \ln 6 - (3 \ln 2 + 2 \ln 1 - \ln 5) = 3 \ln 3 + 2 \ln 3 +$$

$$3\ln 3 + 2\ln 2 - \ln 6 - 3\ln 2 + \ln 5 = 3\ln 3 - \ln 2 - \ln 3 - \ln 2 + \ln 5 = 2\ln 3 - 2\ln 2 + \ln 5 = \ln \frac{45}{4}$$

EXERCICE 3: Une primitive de la fonction f est la fonction F définie sur [1; $+\infty$ [par F(x) = $\frac{-1}{x}$.

1. Pour
$$a \ge 1$$
, $I(a) = \int_{1}^{a} f(t) dt = \left[\frac{-1}{x} \right]_{1}^{a} = 1 - \frac{1}{a}$.

2. $\lim_{a \to \infty} I(a) = 1$ puisque $\lim_{a \to \infty} \frac{1}{a} = 0$. Interprétation graphique : l'aire située entre la courbe représentative de f, l'axe des abscisses et la droite d'équation x = 1 vaut 1. Cette aire représente une partie illimitée du plan!

EXERCICE 4

1. a) On sait que
$$\lim_{x \to -\infty} e^x = 0$$
, donc $\lim_{x \to +\infty} e^{-x} = 0$. Pour tout réel x , $x^2 e^{-x} = 4 \left(\frac{x}{2} e^{\frac{-x}{2}} \right)^2$ et $\lim_{x \to +\infty} X e^{-x} = 0$, donc $\lim_{x \to +\infty} x^2 e^{-x} = 0$ et $\lim_{x \to +\infty} f(x) = 0$. On sait que $\lim_{x \to -\infty} e^{-x} = +\infty$, et $\lim_{x \to -\infty} (1-x^2) = -\infty$ donc $\lim_{x \to -\infty} f(x) = -\infty$.

b) La fonction f est dérivable sur \mathbb{R} comme produit et composée de fonctions qui le sont.

Et $f'(x) = -2x e^{-x} - (1 - x^2) e^{-x} = (x^2 - 2x - 1) e^{-x}$ qui est du signe de $x^2 - 2x - 1$ puisque $e^{-x} > 0$ sur |R. On calcule le discriminant : $\Delta = (-2)^2 - 4(-1) = 4 + 4 = 8 > 0$, il y a donc deux solutions réelles :

 $x_1 = \frac{2 - 2\sqrt{2}}{2} = 1 - \sqrt{2}$ et $x_2 = 1 + \sqrt{2}$. Le polynôme $x^2 - 2x - 1$ est du signe de a = 1 pour les valeurs extérieures aux racines x_1 et x_2 . Donc la fonction f est croissante sur $]-\infty$; $1-\sqrt{2}$] et sur $[1+\sqrt{2};+\infty[$, et elle est décroissante sur $[1-\sqrt{2};1+\sqrt{2}].$

2. On pose $u'(x) = e^{-x}$ et $v(x) = 1 - x^2$. Alors $u(x) = -e^{-x}$ et v'(x) = -2x. A l'aide de la formule d'intégration par parties $A = \int_0^1 f(t) dt = \left[(1 - x^2)(-e^{-x}) \right]_0^1 - \int_0^1 2x e^{-x} dx$. On pose $u'(x) = e^{-x}$ et v(x) = 2x. Alors $u(x) = -e^{-x}$ et v'(x) = 2. On obtient $A = \left[(1 - x^2)(-e^{-x}) \right]_0^1 - \left[(2x)(-e^{-x}) \right]_0^1 - \int_0^1 -2e^{-x} dx = 0$ of a = 1 and a = 1 of a = 1. Interprétation graphique de a = 1. Interprétation graphique de a = 1 et la courbe a = 1 et la courbe a = 1. Interprétation a = 1 et la courbe a = 1 et la courbe a = 1.

- 3. a) Pour tout réel x de $[1; +\infty[$, $\int_{1}^{x} f(t) dt$ est la primitive de la fonction f qui s'annule en x = 1. Donc F est dérivable sur $[1; +\infty[$, et sa dérivée est f(x).
- b) On utilise les résultats de la question 2: $F(x) = \int_{1}^{x} f(t) dt = \left[(1 t^{2})(-e^{-t}) \right]_{1}^{x} \left(\left[(2t)(-e^{-t}) \right]_{1}^{x} + 2 \left[-e^{-t} \right]_{1}^{x} \right) = \left[(-t^{2} 2t 1)(-e^{-t}) \right]_{1}^{x} = (-x^{2} 2x 1)(-e^{-x}) 4e^{-1} = (x + 1)^{2}e^{-x} 4e^{-1}.$

On a vu que $\lim_{x \to +\infty} x^2 e^{-x} = 0$; de plus $\lim_{x \to +\infty} x e^{-x} = 0$ et $\lim_{x \to +\infty} e^{-x} = 0$, donc $\lim_{x \to +\infty} (x+1)^2 e^{-x} = 0$ et $\lim_{x \to +\infty} F(x) = -4e^{-1}$.

- c) La courbe représentative de F admet une asymptote horizontale d'équation $y = -4e^{-1}$ en $+\infty$.
- 4. L'équation F(x) = -A est équivalente à $(x+1)^2 e^{-x} 4e^{-1} = -4e^{-1} + 1$, équivalent à $(x+1)^2 e^{-x} = 1$, équivalent à $(x+1)^2 = e^x$, équivalent à $2\ln(1+x) = x$ pour x dans $[1; +\infty[$ (car 1+x>0).
- b) La fonction h est dérivable sur $[1; +\infty]$ comme somme et composée de fonctions qui le sont;

 $h'(x) = \frac{2}{1+x} - 1 = \frac{1-x}{1+x} \le 0$, car 1+x>0 et $1-x\le 0$. Donc la fonction h est strictement décroissante sur $[1; +\infty)$.

c) Calcul de la limite
$$\lim_{x \to +\infty} h(x) : h(x) = 2\ln(1+x) - x = x(2\frac{\ln(1+x)}{x} - 1) = x(2\frac{\ln(1+x)}{1+x} \frac{1+x}{x} - 1).$$

On sait que $\lim_{X \to +\infty} \frac{\ln X}{X} = 0$, donc $\lim_{x \to +\infty} \frac{\ln(1+x)}{(1+x)} = 0$ et $\lim_{x \to +\infty} \frac{1+x}{x} = 1$, donc $\lim_{x \to +\infty} (2\frac{\ln(1+x)}{1+x}\frac{1+x}{x} - 1) = -1$,

donc $\lim_{x\to +\infty} h(x) = -\infty$. De plus, $h(1) = 2\ln 2 - 1 = \ln 4 - 1 \simeq 0,4 > 0$. La fonction h est continue puisque dérivable et strictement décroissante de $[1; +\infty[$ dans $]-\infty; h(1)]$, donc par le théorème des valeurs intermédiaires, pour tout réel k de $]-\infty; h(1)]$, il existe un unique réel c de $[1; +\infty[$ tel que h(c) = k.

Comme $0 \in]-\infty$; h(1)], il existe un unique réel α de $[1; +\infty [$ tel que $h(\alpha) = 0$, soit $2\ln(1 + \alpha) = \alpha$.

- d) Un encadrement de α à 10^{-3} près: à l'aide de la calculatrice, on trouve 2,512 < α < 2,513.
- e) Comme $2\ln(1+\alpha) = \alpha$, $f(\alpha) = (1-\alpha^2) e^{-\alpha} = (1-\alpha^2) e^{-2\ln(1+\alpha)} = (1-\alpha^2)(1+\alpha)^{-2} = \frac{1-\alpha^2}{(1+\alpha)^2} = \frac{1-\alpha}{1+\alpha}$ dont une valeur approchée à 10^{-3} près est -0.430.