EXERCICE 1: Partie A: 1. Pour tout réel x, $x^2 + 1$ est strictement positif, donc $\sqrt{x^2 + 1}$ est définie sur \mathbb{R} et donc l'ensemble de définition de la fonction f est $D_f = \mathbb{R}$.

- 2. D_f est symétrique par rapport à 0. De plus, pour tout réel x, $f(-x) = \sqrt{(-x)^2 + 1} 1 = \sqrt{x^2 + 1} 1 = f(x)$. Donc la fonction f est paire.
- 3. Comme f est paire, $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x)$. On sait que $\lim_{x \to +\infty} (x^2 + 1) = +\infty$ et que $\lim_{x \to +\infty} \sqrt{X} = +\infty$, donc en utilisant les limites de fonctions composées, $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} f(x) = +\infty$.
- 4. a) Pour montrer que la droite d'équation y = x 1 est asymptote oblique à la courbe C, on étudie la limite:

$$\lim_{x \to +\infty} (f(x) - (x-1)) = \lim_{x \to +\infty} (\sqrt{x^2 + 1} - x) = \lim_{x \to +\infty} \frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} + x} = \lim_{x \to +\infty} \frac{1}{\sqrt{x^2 + 1} + x} = 0$$

car $\lim_{x \to +\infty} \sqrt{x^2 + 1} = \lim_{x \to +\infty} (\sqrt{x^2 + 1} + x) = +\infty$. Donc la droite d'équation y = x - 1 est asymptote oblique à C en $+\infty$.

- b) Par symétrie, la droite d'équation y = -x 1 est asymptote oblique à C en $-\infty$.
- 5. La fonction f est dérivable sur \mathbb{R} comme composée de fonctions dérivables sur \mathbb{R} .

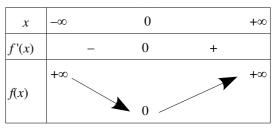
La dérivée de \sqrt{u} est $\frac{u'}{2\sqrt{u}}$. D'où la dérivée de f est $f'(x) = \frac{2x}{2\sqrt{x^2+1}} = \frac{x}{\sqrt{x^2+1}}$ qui est du signe de x. La fonction f

est donc décroissante dur IR⁻ et croissante sur IR⁺.

- 6. Le tableau de variations de f sur D_f :
- 7. L'équation de la tangente à C au point d'abscisse 1 est

$$y = f'(1)(x-1) + f(1) = \frac{1}{\sqrt{2}}(x-1) + \sqrt{2} - 1 = \frac{1}{\sqrt{2}}x + \frac{\sqrt{2}}{2} - 1$$
.

8. L'équation f(x) = 0 équivaut à $\sqrt{x^2 + 1} = 1$, soit $x^2 + 1 = 1$, soit $x^2 = 0$. La seule solution est 0.



Partie B: 1. Pour montrer que la fonction g est continue en 0, on étudie $\lim_{x\to 0} g(x) = \lim_{x\to 0} \frac{f(x)}{x}$.

Or
$$\frac{f(x)}{x} = \frac{\sqrt{x^2 + 1} - 1}{x}$$
, on trouve une forme indéterminée $\frac{0}{0}$.

Pour x non nul,
$$\frac{f(x)}{x} = \frac{\sqrt{x^2 + 1} - 1}{x} = \frac{x^2 + 1 - 1}{x(\sqrt{x^2 + 1} + 1)} = \frac{x^2}{x(\sqrt{x^2 + 1} + 1)} = \frac{x}{\sqrt{x^2 + 1} + 1}$$
. $\lim_{x \to 0} (\sqrt{x^2 + 1} + 1) = 2$, donc

 $\lim_{x\to 0} g(x) = 0 = g(0) \text{ donc la fonction } g \text{ est continue en } 0$

2. Pour étudier la dérivabilité de g en 0, on détermine $\lim_{x\to 0} \frac{g(x)-g(0)}{x-0} = \lim_{x\to 0} \frac{f(x)}{x^2}$.

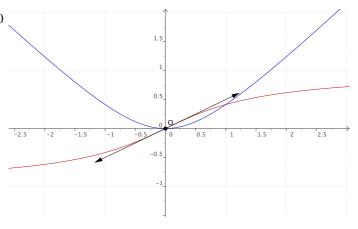
Pour x non nul, $\frac{f(x)}{x^2} = \frac{\sqrt{x^2 + 1} - 1}{x^2} = \frac{x^2 + 1 - 1}{x^2(\sqrt{x^2 + 1} + 1)} = \frac{1}{\sqrt{x^2 + 1} + 1}$. Donc $\lim_{x \to 0} \frac{f(x)}{x^2} = \frac{1}{2}$; ainsi la fonction g est

3. Ce dernier résultat indique que, au point d'abscisse 0 la courbe admet une tangente de coefficient directeur

égal à $\frac{1}{2}$.

dérivable en 0.

Ci-contre le tracé de f et de g.



EXERCICE 2:

On considère la suite numérique (u_n) définie sur \mathbb{N} par $u_0 = 1$ et $u_{n+1} = 2u_n - 3$.

- 1. Les trois premiers termes de la suite (u_n) : $u_0 = 1$, $u_1 = -1$, $u_2 = -5$.
- 2. On pose $v_n = u_n 3$.
- 3. $v_{n+1} = u_{n+1} 3 = 2u_n 3 3 = 2(u_n 3) = 2v_n$. Donc la suite (v_n) est géométrique de premier terme $v_0 = u_0 3 = -2$ et de raison 2.
- 4. Donc pour tout entier naturel n, $v_n = -2 \times 2^n$, puis $u_n = v_n + 3 = 3 2 \times 2^n$.
- 5. La suite (v_n) est géométrique de premier terme $v_0 = -2$ et de raison 2, elle est donc strictement décroissante; soit pour tout entier naturel n, $v_{n+1} < v_n$. Donc $u_{n+1} 3 < u_n 3$, soit $u_{n+1} < u_n$. Ainsi la suite (u_n) est strictement décroissante.

6. On considère la suite (w_n) définie sur \mathbb{N} par $w_n = u_n + 2n$.

Pour étudier les variations de (w_n) , on étudie le signe de $w_{n+1} - w_n = u_{n+1} + 2(n+1) - (u_n + 2n) = u_{n+1} - u_n + 2 = 3 - 2 \times 2^{n+1} - (3 - 2 \times 2^n) + 2 = 2 - 2(2^{n+1} - 2^n) = 2 - 2^n (2 - 1) = 2 - 2^n = 2(1 - 2^{n-1}).$

Pour n > 0, $2^{n-1} \ge 1$, donc $1 - 2^{n-1} \le 0$ et $w_{n+1} - w_n \le 0$, d'où $w_{n+1} \le w_n$. De plus $w_0 = u_0 = 1$ $w_1 = u_1 + 2 = 1$. Ainsi la suite (w_n) est décroissante sur \mathbb{N} .