EXERCICE 1 (6 points)

On considère les fonctions f et g définies sur $[0; +\infty[$ par $f(x) = \ln(x+1)$ et $g(x) = e^x - 1$. On désigne par C_f et C_g les courbes représentatives des fonctions f et g dans un repère orthonormé $(0; \vec{i}, \vec{j})$.

- 1. Vérifier que les courbes C_f et C_g ont une tangente commune au point O(0; 0). Préciser la position de C_f par rapport à cette tangente.
- 2. Démontrer que les courbes C_f et C_g sont symétriques par rapport à la droite d'équation y = x.
- 3. Soit a un nombre réel strictement positif. On se propose de calculer de deux façons différentes le

nombre
$$I(a) = \int_{0}^{a} f(x) dx$$
.

- a) En utilisant des considérations sur les aires, démontrer que $I(a) = a \ln(a+1) \int_0^{\ln(a+1)} g(x) dx$.
- b) En déduire la valeur de I(a).
- c) Retrouver la valeur de a en effectuant une intégration par parties.

EXERCICE 2 (6 points)

On considère l'équation différentielle (E) : $y' - 2y = (x - 1)e^x$.

- 1. Déterminer les réels a et b pour que la fonction u définie sur \mathbb{R} par $u(x) = (ax + b)e^x$ soit solution de (E).
- 2. Montrer que v est solution de l'équation différentielle (E) si et seulement si u v est solution de l'équation différentielle (E') : y' 2y = 0.
- 3. En déduire toutes les solutions de (E).
- 4. Trouver la solution f de (E) vérifiant f(0) = 1.
- 5. Calculer $\int_{0}^{\ln 3} f(x) dx$. Donner le résultat sous la forme $a + \ln b$ où a et b sont des entiers.

EXERCICE 3 (8 points)

Le plan est rapporté à un repère orthonormé (O; \vec{u} , \vec{v}) (unité graphique: 2 cm).

On considère les points A, B et C d'affixes respectives: $z_A = -1 + i\sqrt{3}$, $z_B = -1 - i\sqrt{3}$ et $z_C = 2$.

- 1. Placer les points sur un dessin.
- 2. Montrer que $\frac{z_{\rm B} z_{\rm C}}{z_{\scriptscriptstyle \Delta} z_{\scriptscriptstyle C}} = e^{i\frac{\pi}{3}}$.
- 3. En déduire la nature du triangle ABC.
- 4. Déterminer le centre et le rayon du cercle Γ_1 circonscrit au triangle ABC. Tracer le cercle Γ_1 .
- 5. a) Établir que l'ensemble Γ_2 des points M d'affixe z qui vérifient $4(z+\bar{z})+z\bar{z}=0$ est un cercle de centre Ω d'affixe -2.
- b) Préciser son rayon. Construire Γ_2 .
- c) Montrer que A et B appartiennent à Γ_2 .
- 6. a) Déterminer l'ensemble Γ_3 des points M d'affixe z du plan tel que $|z-2|=|z+1+i\sqrt{3}|$.
- b) Montrer que le point A appartient à cet ensemble Γ_3 .