EXERCICE 1

1. On considère, pour tout entier naturel *n* non nul la suite (u_n) définie par $u_n = \frac{n^2}{2^n}$ et la

suite (v_n) définie par $v_n = \frac{u_{n+1}}{u_n}$.

- a) Montrer que $\lim_{n \to +\infty} v_n = \frac{1}{2}$.
- b) Montrer que pour tout entier naturel n > 0, $v_n > \frac{1}{2}$.
- c) Trouver le plus petit entier N tel que, si $n \ge N$, $v_n < \frac{3}{4}$.
- d) En déduire que si $n \ge N$, alors $u_{n+1} < \frac{3}{4} u_n$.
- 2. On pose pour tout entier $n \ge 5$: $S_n = u_5 + u_6 + u_7 + ... + u_n$.
- a) Montrer par récurrence que, pour tout entier $n \ge 5$: $u_n \le \left(\frac{3}{4}\right)^{n-5} u_5$.
- b) Montrer que, pour tout entier $n \ge 5$: $S_n \le \left[1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + ... + \left(\frac{3}{4}\right)^{n-5}\right] u_5$.
- c) En déduire que, pour tout entier $n \ge 5$: $S_n \le 4u_5$.
- 3. Montrer que la suite $(S_n)_{n \ge 5}$ est croissante et en déduire qu'elle converge.

EXERCICE 2

- 1. On considère la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{x}{\sqrt{3}} + \frac{\sqrt{3}}{2x}$ et C sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$ du plan.
- a) Montrer que C admet deux asymptotes que l'on précisera.
- b) Dresser le tableau de variations de f.
- c) Tracer la courbe C.
- 2. Soit m un réel et (d) la droite d'équation y = m.

Discuter, suivant les valeurs de m du nombre de points d'intersection de C et (d).

- 3. Dans la suite, on suppose que $m > \sqrt{2}$, et on appelle A et B les points d'intersection de C et (d).
- a) Montrer que le produit de l'abscisse de A par l'abscisse de B est constant égal à $\frac{3}{2}$.
- b) Soit I le milieu de [AB]. A l'aide de GeoGebra, conjecturer le lieu du point I lorsque m décrit l'intervalle [$\sqrt{2}$; + ∞ [. On pourra utiliser la fonction Trace dans Propriétés du point I (clic droit sur I, puis propriétés). Pour le nombre m, on pourra créer un point M sur l'axe des ordonnées, d'ordonnée supérieure à $\sqrt{2}$, et déplacer M sur cet axe pour faire apparaître la trace de I. Rendre la figure avec la copie.