EXERCICE 1: Partie A: Question de cours:

Supposons (u_n) croissante et (v_n) décroissante. Alors (u_n) est minorée par son premier terme u_0 et (v_n) est majorée par son premier terme v_0 . Ainsi, pour tout entier naturel n, $u_0 \le u_n \le v_n \le v_0$. Donc la suite (u_n) est majorée par v_0 , et par la proposition (3), elle converge vers l. La suite (v_n) est minorée par u_0 , et par la proposition (3), elle converge vers l'. De plus, $\lim_{n \to +\infty} (u_n - v_n) = 0$, donc l - l' = 0, soit l = l'. Ainsi les deux suites adjacentes sont convergentes et elles ont la même limite.

Partie B:

On considère la suite (u_n) définie sur \mathbb{N} dont aucun terme n'est nul. Soit la suite (v_n) définie sur \mathbb{N} par $v_n = \frac{-2}{u}$.

- 1. Si (u_n) est convergente, alors $\lim_{n\to+\infty} u_n = l$. Si $l\neq 0$, alors $\lim_{n\to+\infty} v_n = \frac{-2}{l}$ et (v_n) est convergente. Si l=0, alors $\lim_{n\to+\infty} v_n = \pm \infty$, et (v_n) est divergente. Donc proposition fausse.
- 2. Si (u_n) est minorée par 2, alors pour tout entier naturel n, $u_n \ge 2$, donc $0 < \frac{1}{u_n} \le \frac{1}{2}$ et $0 > \frac{-2}{u_n} \ge -1$, alors (v_n) est minorée par -1. Donc proposition vraie.
- 3. Si (u_n) est décroissante, alors pour tout entier naturel $n, u_n \ge u_{n+1}$, donc $\frac{1}{u_n} \le \frac{1}{u_{n+1}}$ et $\frac{-2}{u_n} \ge \frac{-2}{u_{n+1}}$,

donc $v_n \ge v_{n+1}$, alors (v_n) est décroissante. Donc proposition fausse.

4. Si (u_n) est divergente, alors plusieurs cas: Si $\lim_{n\to+\infty} u_n = \pm \infty$, alors (v_n) converge vers 0. Si (u_n) n'a pas de limite, alors (v_n) n'a pas de limite. Donc proposition fausse.

EXERCICE 2: Partie A : Soit g la fonction définie sur \mathbb{R} par $g(x) = e^x - x - 1$.

- 1. La fonction g est dérivable sur \mathbb{R} comme somme de fonctions dérivables sur \mathbb{R} . Et $g'(x) = e^x 1$; $g'(x) \ge 0$ équivaut à $e^x 1 \ge 0$ équivaut à $e^x \ge 1$ équivaut à $e^x \ge 0$. Donc, la fonction g est croissante sur \mathbb{R}^+ et décroissante sur \mathbb{R}^- . Donc la fonction g admet un minimum en g = 0, égal à $g(0) = e^0 0 1 = 0$. Donc g est positive sur \mathbb{R} .
- 2. Comme g est positive sur \mathbb{R} , $e^x x 1 \ge 0$, soit $e^x x \ge 1$, donc, pour tout réel x, $(e^x x)$ est strictement positif.

Dantia D

1. On peut écrire
$$f(x) = \frac{1}{(e^x - x)/x} = \frac{1}{\frac{e^x}{x} - 1}$$
. On sait que $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$, donc $\lim_{x \to +\infty} (\frac{e^x}{x} - 1) = +\infty$, et $\lim_{x \to +\infty} f(x) = 0$.

Et
$$\lim_{x \to -\infty} \frac{e^x}{x} = 0$$
, donc $\lim_{x \to -\infty} (\frac{e^x}{x} - 1) = -1$, et $\lim_{x \to -\infty} f(x) = -1$.

- 2. La courbe C admet deux asymptotes horizontales, une en $+\infty$ d'équation y = 0 et l'autre en $-\infty$ d'équation y = -1.
- 3. La fonction f est dérivable sur \mathbb{R} comme quotient de fonctions dérivables sur \mathbb{R} .

Et
$$f'(x) = \frac{1(e^x - x) - x(e^x - 1)}{(e^x - x)^2} = \frac{e^x(1 - x)}{(e^x - x)^2}$$
; le signe de $f'(x)$ est donné par le signe de $1 - x$.

D'où, la fonction f est croissante sur $]-\infty$; 1] et décroissante sur $[1; +\infty[$.

4. Le tableau de variations de *f* :

Et
$$f(1) = \frac{1}{e-1} \simeq 0.58$$
.

5. Une équation de la tangente T à la courbe C au point d'abscisse 0 est donnée par y = f'(0)(x - 0) + f(0) = x.

x	- ∞	1		+∞
f'(x)	-	+ 0	_	
f(x)	-1/	√ f(1)	*	0

6. Pour étudier la position de la courbe C par rapport à la tangente T, on étudie le signe

$$\det f'(x) - x = \frac{x}{e^x - x} - x = \frac{x - x(e^x - x)}{e^x - x} = \frac{x(-e^x + x + 1)}{e^x - x} = \frac{x(-g(x))}{e^x - x} = \frac{-x \times g(x)}{e^x - x}$$
 qui est du signe de $-x$

puisque, d'après la partie A, pour tout réel $x, g(x) \ge 0$ et $e^x - x > 0$.

Ainsi, C est au-dessus de T sur \mathbb{R}^- et au-dessous de T sur \mathbb{R}^+ .

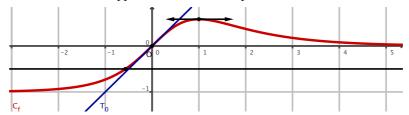
7. La fonction f est continue car dérivable sur \mathbb{R} et strictement croissante de] $-\infty$; 1] dans] – 1; $\frac{1}{a-1}$]

Or $\frac{-1}{2} \in]-1; \frac{1}{1}$], donc l'équation $f(x) = \frac{-1}{2}$ admet une unique solution α dans $]-\infty$; 1]. De plus, la fonction $f(x) = \frac{-1}{2}$

est continue sur \mathbb{R} et strictement décroissante de $[1; +\infty [$ dans $[\frac{1}{e-1}; 0[$. Et $\frac{-1}{2} \notin [\frac{1}{e-1}; 0[$, donc l'équation

 $f(x) = \frac{-1}{2}$ n'a pas de solution dans [1; +\infty [. Ainsi l'équation $f(x) = \frac{-1}{2}$ admet une unique solution α dans \mathbb{R} .

Avec la calculatrice, on trouve une valeur approchée de α à 10^{-2} près : $\alpha = -0.57$.



EXERCICE 3:

1. a) On a, pour tout nombre complexe z,
$$(z + 2)(z^2 - 2z + 4) = z^3 - 2z^2 + 4z + 2z^2 - 4z + 8 = z^3 + 8$$
.

b) L'équation
$$z^3 + 8 = 0$$
 est équivalente à $(z + 2)(z^2 - 2z + 4) = 0$, soit $z = -2$ ou $z^2 - 2z + 4 = 0$.

Le discriminant
$$\Delta = -12 < 0$$
, donc il y a deux solutions complexes : $z_1 = \frac{2 + i\sqrt{12}}{2} = \frac{2 + 2i\sqrt{3}}{2} = 1 + i\sqrt{3}$ et

$$z_2 = \frac{2 - i\sqrt{12}}{2} = 1 - i\sqrt{3} = \bar{z}_1$$
. L'ensemble solution est $S = \{-2; 1 + i\sqrt{3}; 1 - i\sqrt{3}\}$.

c) On calcule les modules de
$$z_1$$
, de z_2 et de z_3 : $|z_1| = \sqrt{1^2 + (\sqrt{3})^2} = 2$. Ainsi $|z_2| = |\overline{z_1}| = |z_1| = 2$. $|z_3| = |-2| = 2$.

Soit
$$\theta = \arg(z_1)$$
. Alors $\cos(\theta) = \frac{1}{2}$ et $\sin(\theta) = \frac{\sqrt{3}}{2}$, donc $\theta = \frac{\pi}{3}$ [2π]. Et $\arg(z_2) = \arg(\bar{z_1}) = -\arg(z_1) = \frac{-\pi}{3}$ [2π].

Donc
$$z_1 = 2(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}))$$
 et $z_2 = 2(\cos(\frac{-\pi}{3}) + i\sin(\frac{-\pi}{3}))$. Et $z_3 = -2 = 2(\cos(\pi) + i\sin(\pi))$.

2. On considère les nombres complexes
$$z_1 = 1 + i\sqrt{3}$$
, $z_2 = 1 - i\sqrt{3}$ et $z_3 = -2$.

2. On considère les nombres complexes
$$z_1 = 1 + i\sqrt{3}$$
, $z_2 = 1 - i\sqrt{3}$ et $z_3 = -2$.
a) $\frac{z_3 - z_2}{z_1 - z_2} = \frac{-2 - (1 - i\sqrt{3})}{1 + i\sqrt{3} - (1 - i\sqrt{3})} = \frac{-3 + i\sqrt{3}}{2i\sqrt{3}} = \frac{(-3 + i\sqrt{3})(-2i\sqrt{3})}{(2i\sqrt{3})(-2i\sqrt{3})} = \frac{6 + 6i\sqrt{3}}{12} = \frac{1 + i\sqrt{3}}{2}$.

$$\left| \frac{z_3 - z_2}{z_1 - z_2} \right| = \left| \frac{1 + i\sqrt{3}}{2} \right| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = 1.$$

Soit
$$\theta = \arg\left(\frac{z_3 - z_2}{z_1 - z_2}\right)$$
. Alors $\cos(\theta) = \frac{1}{2}$ et $\sin(\theta) = \frac{\sqrt{3}}{2}$, donc $\theta = \frac{\pi}{3}$ [2 π].

b) D'après la question 1. b, z_1 et z_2 sont solutions de l'équation $z^3 + 8 = 0$, soit $z^3 = -8$. Ainsi $z_1^3 = z_2^3 = -8$.