Exercice 1: On considère deux entiers naturels a et b tels que $a^2 - 2b^2 = 1$ (1).

- 1. a) On peut écrire (1) sous la forme au + bv = 1 avec u = a et v = -2b; u et v sont des entiers relatifs; donc d'après le théorème de Bezout, les nombres a et b sont premiers entre eux;
- b) a est impair : $a^2 = 2b^2 + 1$ de la forme 2k + 1 avec $k \in \mathbb{N}$; donc a^2 est impair, soit a est impair.
- c) b est pair : $2b^2 = a^2 1 = (a-1)(a+1)$; a+1 et a-1 sont pairs car a est impair, donc (a-1)(a+1) = 4k', soit $2b^2 = 4k'$, soit $b^2 = 2k'$, donc b^2 est pair, soit b est pair.
- 2. A l'aide d'un tableur, on trouve quatre couples (a; b) d'entiers naturels inférieurs à 100 vérifiant (1): (1; 0); (3; 2); (17; 12); (99; 70).
- 3. Si le couple (a; b) est solution de (1), alors $a^2 2b^2 = 1$; et
- $A^2 2B^2 = (3a + 4b)^2 2(2a + 3b)^2 = 9a^2 + 24ab + 16b^2 2(4a^2 + 12ab + 9b^2) = a^2 2b^2 = 1$. Donc le couple (A; B) est aussi solution de (1).
- 4. On en déduit un couple d'entiers supérieurs à 1000 solution de (1): on prend a = 99 et b = 70,

alors A = $3 \times 99 + 4 \times 70 = 577$ et B = $2 \times 99 + 3 \times 70 = 408$ est un couple solution;

puis A = $3 \times 577 + 4 \times 408 = 3363$ et B = $2 \times 577 + 3 \times 408 = 2378$ est un couple solution. Vérification : $3363^2 - 2 \times 2378^2 = 1$.

Exercice 2 : Soit *n* un entier naturel supérieur ou égal à 2.

- 1. Si a et b sont deux entiers naturels tels que a > b, alors $a\ln(n) > b\ln(n)$, alors $\ln(n^a) > \ln(n^b)$, alors $n^a > n^b$ et alors $n^a 1 > n^b 1$.
- 2. Pour tout entier naturel n supérieur ou égal à 2, et d'après la question précédente, $0 \le n^3 1 < n^5 1$, donc $n^8 1 = n^3(n^5 1) + n^3 1$ est la division euclidienne de $n^8 1$ par $n^5 1$.
- 3. L'algorithme d'Euclide pour déterminer le PGCD($n^8 1$; $n^5 1$):

$$n^8 - 1 = n^3(n^5 - 1) + n^3 - 1$$
 et $0 \le n^3 - 1 < n^5 - 1$,

$$n^5 - 1 = n^2(n^3 - 1) + n^2 - 1$$
 et $0 \le n^2 - 1 < n^3 - 1$,

$$n^3 - 1 = n(n^2 - 1) + n - 1$$
 et $0 \le n^2 - 1 < n - 1$,

 $n^2 - 1 = n(n-1) + n - 1 = (n+1)(n-1)$ de reste nul. Le dernier reste non nul est n-1,

donc PGCD(
$$n^8 - 1$$
; $n^5 - 1$) = $n - 1$.

- 4. Le PGCD de 8 et 5 est 1. Comme $n \ge 2$, alors PGCD($n^8 1$; $n^5 1$) \ge PGCD(8; 5).
- 5. Soit a et b deux entiers naturels tels que a > b > 0, a = bq + r la division euclidienne de a par b et d = PGCD(a; b).
- a) La division euclidienne de $n^a 1$ par $n^b 1$ est $n^a 1 = (n^{b(q-1)+r} + n^{b(q-2)+r} + ... + n^r)(n^b 1) + n^r 1$, d'où $N = n^{b(q-1)+r} + n^{b(q-2)+r} + ... + n^r$.
- b) En utilisant l'algorithme d'Euclide pour a et b :

$$a = bq + r$$
, et $0 \le r < b$,

$$b = rq_1 + r_1$$
, et $0 \le r_1 < r$,

$$r = r_1 q_2 + r_2$$
, et $0 \le r_2 < r_1$, ...

 $r_{m-1} = r_m q_{m+1} + r_{m+1}$, et $r_{m+1} = 0$, le dernier reste non nul $r_m = d$;

on trouve alors:

$$n^{a} - 1 = (n^{b(q-1)+r} + n^{b(q-2)+r} + \dots + n^{r})(n^{b} - 1) + n^{r} - 1, \text{ et } 0 \le n^{r} - 1 < n^{b} - 1,$$

$$n^{b} - 1 = N_{1}(n^{r} - 1) + n^{r_{1}} - 1, \text{ et } 0 \le n^{r_{1}} - 1 < n^{r} - 1,$$

$$n^{r} - 1 = N_{2}(n^{r_{1}} - 1) + n^{r_{2}} - 1, \text{ et } 0 \le n^{r_{2}} - 1 < n^{r_{1}} - 1, \dots$$

 $n^{r_{m-1}} - 1 = N_m (n^{r_m} - 1) + n^{r_{m+1}} - 1$, et $n^{r_{m+1}} - 1 = 1 - 1 = 0$, donc le dernier reste non nul est $n^{r_m} - 1 = n^d - 1$. Donc PGCD $(n^d - 1; n^b - 1) = n^d - 1$.