EXERCICE 1 (5 points)

Le plan complexe est rapporté à un repère orthonormal direct (O ; \vec{u} ; \vec{v})

On considère les points A, B, C et D d'affixes respectives $z_A = 1 + i$, $z_B = i$, $z_C = -i$ et $z_D = 2 - i$.

- 1. Déterminer l'écriture complexe de la similitude directe s qui transforme A en C et B en D.
- 2. Préciser les éléments caractéristiques de cette similitude.
- 3. Déterminer l'image de C par la similitude s.

EXERCICE 2 (15 points)

Le plan complexe est muni d'un repère orthonormal direct (O ; \overrightarrow{OI} ; \overrightarrow{OJ}) . On considère les points A et B

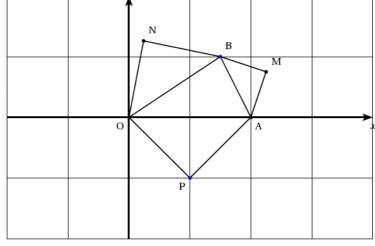
d'affixes respectives
$$z_A = 2$$
 et $z_B = \frac{3}{2} + i$.

On considère les points M, N et P tels que les triangles AMB, BNO et OPA soient des triangles rectangles isocèles de sens direct comme le montre la figure ci-contre.

On note s_1 la similitude directe de centre A qui transforme M en B.

On note s_2 la similitude directe de centre O qui transforme B en N. On considère la transformation $r = s_2$ s_1 .

Le but de l'exercice est de démontrer de deux façons différentes que les droites (OM) et (PN) sont perpendiculaires.



- 1. À l'aide des transformations :
- a. Donner l'angle et le rapport de s_1 et de s_2 .
- b. Déterminer l'image du point M puis celle du point I par la transformation r.
- c. Justifier que r est une rotation d'angle $\frac{\pi}{2}$ dont on précisera le centre.
- d. Quelle est l'image du point O par *r* ?
- e. En déduire que les droites (OM) et (PN) sont perpendiculaires.
- 2. En utilisant les nombres complexes :
- a. Donner les écritures complexes de s_1 et s_2 . On utilisera les résultats de la question 1. a.
- b. En déduire les affixes z_M et z_N des points M et N.
- c. Donner, sans justification, l'affixe z_P du point P puis démontrer que les droites (OM) et (PN) sont perpendiculaires.