EXERCICE 1 (6 points)

- 1. On considère la fonction polynôme P définie pour tout réel x par : $P(x) = x^3 3x 3$.
- a) Etudier les variations de P.
- b) Montrer que l'équation P(x) = 0 admet une unique solution α sur $\frac{1}{3}$. Donner un encadrement de α à 0,01 près.
- c) En déduire le signe de P sur ; .
- 2. On considère la fonction f définie sur I =]1; $+\infty$ [par $f(x) = \frac{2x^3 + 3}{x^2 1}$.
- a) Déterminer les limites de f aux bornes de I.
- b) Montrer que la fonction f est dérivable et que le signe de f '(x) est celui de P(x) sur I . Etudier les variations de f sur I et dresser son tableau de variations.

EXERCICE 2 (7 points)

On considère la suite (u_n) définie par $u_0 = 0$ et pour tout entier nature $u_0 = \frac{2u_n + 3}{u_n + 4}$.

- a) Montrer que pour tout entier naturel n, $u_{n+1} = 2 \frac{5}{u_n + 4}$.
- b) Montrer par récurrence que, pour tout entier nature n non nul, $0 \le u_n \le 2$.
- c) On considère la suite (v_n) définie pour tout entier naturel n, par $v_n = \frac{u_n 1}{u_n + 3}$. Montrer que la suite (v_n) est une suite géométrique de raison $\frac{1}{5}$ dont on précisera le premier terme .
- d) Ecrire alors v_n en fonction de n. Déterminer la limite de la suite (v_n) .
- e) Ecrire u_n en fonction de n. Etudier la convergence de la suite (u_n) .

EXERCICE 3 (7 points)

On considère la suite (u_n) définie par $u_0 = 0$ et pour tout entier nature n, $u_{n+1} = \frac{1}{2 - u_n}$.

- a) Calculer u_1 , u_2 , u_3 . On exprimera chacun de ces termes sous la forme d'une fraction irréductible.
- b) Comparer les quatre premiers termes de la suite (u_n) avec ceux de la suite (w_n) définie sur IN par $w_n = \frac{n}{n+1}$.
- c) Démontrer que pour tout entier naturel n, $u_n = w_n$.
- d) Montrer que la suite (u_n) est croissante.
- e) Montrer que la suite (u_n) est bornée par 0 et 1.
- f) Déterminer le produit $v_n = u_1 \times u_2 \times ... \times u_n$ sous la forme d'une fraction dépendant de n.
- g) Déterminer la limite des suites (u_n) et (v_n) .