EXERCICE 1: 1. a) Pour montrer que les points A, B et C ne sont pas alignés, il suffit de montrer que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires : \overrightarrow{AB} (0; 1; 2) et \overrightarrow{AC} (-2; 1; -1); les coordonnées de ces vecteurs ne sont pas proportionnelles, donc les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires et les points ne sont pas alignés.

- b) Pour vérifier que le vecteur \vec{n} est orthogonal aux vecteurs \overrightarrow{AB} et \overrightarrow{AC} , on calcule les produits scalaires :
- $\vec{n} \cdot \overrightarrow{AB} = 3 \times 0 + 4 \times 1 2 \times 2 = 0$; $\vec{n} \cdot \overrightarrow{AC} = 3 \times (-2) + 4 \times 1 2 \times (-1) = 0$; donc \vec{n} est bien orthogonal aux vecteurs \overrightarrow{AB} et \overrightarrow{AC} . Une équation cartésienne du plan (ABC) est donnée par ax + by + cz + d = 0, où (a; b; c)sont les coordonnées d'un vecteur normal, ici \vec{n} . De plus, le plan (ABC) contient le point A, d'où $3\times1+4\times0 2 \times 2 + d = 0$, soit d = 1. Un équation de (ABC) est : 3x + 4y - 2z + 1 = 0.
- 2. a) Un vecteur normal à P_1 est : \vec{n}_1 (2; 1; 2) et un vecteur normal à P_2 est : \vec{n}_2 (1; -2; 6). Ces vecteurs ne sont pas colinéaires, car leurs coordonnées ne sont pas proportionnelles, donc les plans ne sont pas parallèles, ils sont donc sécants suivant une droite D vérifiant le système :

$$\begin{cases} 2x+y+2z+1=0 \\ x-2y+6z=0 \end{cases}$$
 on tire $x=2y-6z$ et en remplaçant dans l'autre équation : $2(2y-6z)+y+2z+1=0$, soit

$$5y - 10z + 1 = 0$$
, d'où $y = 2z - 1/5$ et $x = 2(2z - 1/5) - 6z = -2z - 2/5$. Un système d'équations paramétriques de

D est
$$\begin{cases} x = -2t - 2/5 \\ y = 2t - 1/5 \\ z = t \end{cases} \quad t \in \mathbf{R}$$

- b) On résout l'équation 3(-2t-2/5)+4(2t-1/5)-2t+1=0; on trouve 0t=1 qui n'a pas de solution, donc la droite D et le plan (ABC) sont parallèles.
- 3. Soit t un réel positif quelconque. On considère le barycentre G des points A, B et C affectés des coefficients respectifs 1, 2 et t.
- a) La somme des coefficients 1, 2 et t égale 3 + t, et comme t est un réel positif, cette somme est non nulle, donc le point G existe pour tout réel positif t.

Le point I a pour coordonnées
$$x_I = \frac{x_A + 2x_B}{1 + 2} = 1$$
, $y_I = \frac{y_A + 2y_B}{1 + 2} = \frac{2}{3}$, $z_I = \frac{z_A + 2z_B}{1 + 2} = \frac{10}{3}$.

On a
$$\overrightarrow{GA} + 2 \overrightarrow{GB} + t \overrightarrow{GC} = \overrightarrow{0}$$
 et $\overrightarrow{GA} + 2 \overrightarrow{GB} = 3 \overrightarrow{GI}$, d'où $3 \overrightarrow{GI} + t \overrightarrow{GC} = \overrightarrow{0}$, soit $\overrightarrow{IG} = \frac{t}{3+t} \overrightarrow{IC}$.

- b) Soit f la fonction définie sur $[0; +\infty[$ par $f(t) = \frac{t}{3+t}$. Cette fonction est dérivable comme fonction rationnelle,
- et $f'(t) = \frac{1}{(3+t)^2} > 0$. Donc f est strictement croissante sur $[0; +\infty[; f(0) = 0]]$ et $\lim_{t \to +\infty} f(t) = 1$; donc pour tout réel
- t positif, $0 \le f(t) < 1$; comme $\overrightarrow{IG} = f(t) \overrightarrow{IC}$, alors l'ensemble des points G est le segment [IC] privé du point C.
- c) Le milieu J du segment [IC] coïncide-t-il avec G si $\frac{t}{3+t} = \frac{1}{2}$, soit 2t = 3 + t, soit t = 3.

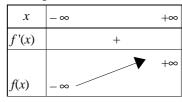
EXERCICE 2: 1. a. Supposons qu'il existe un réel α tel que $f'(\alpha) = 0$. Dans ce cas, avec la propriété (1), $(f'(\alpha))^2 - (f(\alpha))^2 = 1$, soit $(f(\alpha))^2 = -1$, ce qui est impossible. Donc pour tout nombre réel x, $f'(x) \neq 0$. b. Pour x = 0, en utilisant la propriété (1), il vient $(f'(0))^2 - (f(0))^2 = 1$, soit f(0) = 0.

- 2. En dérivant chaque membre de l'égalité de la proposition (1), et sachant que $(u^2)' = 2uu'$, on obtient 2f'(x)f''(x) - 2f'(x)f(x) = 0; soit 2f'(x)(f''(x) - f(x)) = 0; comme pour tout nombre réel $x, f'(x) \neq 0$ alors: pour tout nombre réel x, f''(x) = f(x).
- 3. a. On a u(0) = f'(0) + f(0) = 1 et v(0) = f'(0) f(0) = 1.
- b. Pour tout réel x, u'(x) = f''(x) + f'(x) = f(x) + f'(x) = u(x) et v'(x) = f''(x) f'(x) = f(x) f'(x) = -v(x).
- c. Les fonctions u et v sont solutions d'équations différentielles : y' = y pour u, et y' = -y pour v.
- Solutions de $y' = y : u(x) = Ce^x$. Comme u(0) = 1, alors C = 1, soit $u(x) = e^x$. Solutions de $y' = -y : v(x) = Ce^x$. Comme v(0) = 1, alors C = 1, soit $v(x) = e^{-x}$.
- d. Comme u(x) = f'(x) + f(x) et v(x) = f'(x) f(x), en faisant la différence de ces deux égalités,

on obtient
$$u(x) - v(x) = 2f(x)$$
; donc, pour tout réel $x, f(x) = \frac{e^x - e^{-x}}{2}$.

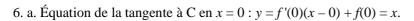
4. a.
$$\lim_{x \to +\infty} f(x) = +\infty$$
; $\lim_{x \to -\infty} f(x) = -\infty$ É, car $\lim_{x \to +\infty} e^x = +\infty$ et $\lim_{x \to +\infty} e^{-x} = 0$.
b. $f'(x) = \frac{e^x + e^{-x}}{2} > 0$ puisque pour tout réel $x, e^x > 0$.

b.
$$f'(x) = \frac{e^x + e^{-x}}{2} > 0$$
 puisque pour tout réel $x, e^x > 0$.



5. a. La fonction f est continue et strictement croissante de \mathbf{R} dans \mathbf{R} ; ainsi, d'après le théorème des valeurs intermédiaires, pour tout réel m, l'équation f(x) = m a une unique solution dans \mathbf{R} .

b. Lorsque m=3, on a $\frac{e^x-e^{-x}}{2}=3$, soit $e^x-e^{-x}=6$. On pose $X=e^x$; l'équation devient X-1/X=6, soit $X^2-1=6X$, ou $X^2-6X-1=0$; cette équation a deux solutions réelles : $X_1=3+\sqrt{10}$ et $X_2=3-\sqrt{10}$; X_2 est strictement négatif, d'où la solution de f(x)=3 est $x_1=\ln(3+\sqrt{10})\approx 1,82$.



Tracé de la courbe C représentative de la fonction f:

b. Le domaine du plan, ensemble des points M(x; y) vérifiant $0 \le x \le \ln 3$ et $0 \le y \le f(x)$ est en bleu.

c. Une primitive de
$$f$$
 est $F(x) = \frac{e^x + e^{-x}}{2}$.

L'aire, en unité d'aire, de ce domaine est égale à

$$\int_{0}^{\ln 3} f(x)dx = F(\ln 3) - F(0) = \frac{3 + \frac{1}{3}}{2} - 1 = \frac{2}{3} \text{ u.a.}$$

L'aire en cm² est égale à $\frac{2}{3} \times 4 = \frac{8}{3}$ cm².

