ENONCE : a) Résoudre dans l'ensemble des nombres complexes **C** l'équation $z^2 - 2\sqrt{2}z + 4 = 0$. Ecrire les solutions sous la forme exponentielle complexe.

- b) Dans le plan complexe, rapporté à un repère orthonormé (O; u, v) (unité graphique : 2 cm), placer les points A, B et C d'affixe respective $z_A = 2i$, $z_B = \sqrt{2}(1-i)$, $z_C = \sqrt{2}(1+i)$.
- c) Montrer que $z_A = e^{i\frac{3\pi}{4}} z_B$.
- d) Déterminer l'affixe z_D du point D vérifiant $z_D = e^{i\frac{3\pi}{4}} z_A$. Placer le point D.
- e) Montrer que $z_B = iz_D$.
- f) Montrer que les quatre points A, B, C et D sont sur un même cercle dont on précisera le centre et le rayon.

CORRIGE: a) $\Delta = -8 < 0$, il y a donc deux solutions complexes: $z_1 = \frac{2\sqrt{2} + i\sqrt{8}}{2} = \sqrt{2} + i\sqrt{2}$ et $z_2 = \overline{z_1} = \sqrt{2} - i\sqrt{2}$;

les modules sont égaux à 2 ; des arguments sont opposés et Arg $(z_1) = \frac{\pi}{4} [2\pi]$. D'où $z_1 = 2e^{i\frac{\pi}{4}}$.

- b) On remarque que $z_2 = z_B = \sqrt{2}(1-i)$, $z_1 = z_C = \sqrt{2}(1+i)$.
- c) On a $e^{i\frac{3\pi}{4}}z_B = e^{i\frac{3\pi}{4}} \times 2e^{-i\frac{\pi}{4}} = 2e^{i\frac{\pi}{2}} = 2i = z_A$.
- d) On a $z_D = e^{i\frac{3\pi}{4}} z_A = e^{i\frac{3\pi}{4}} \times 2e^{i\frac{\pi}{2}} = 2e^{i\frac{5\pi}{4}} = 2e^{-i\frac{3\pi}{4}} = -\sqrt{2} i\sqrt{2}$.
- e) On a $iz_D = i(-\sqrt{2} i\sqrt{2}) = \sqrt{2} i\sqrt{2} = z_B$. f) On a OA = OB = OC = OD car $|z_A| = |z_B| = |z_C| = |z_D| = 2$, donc les points A, B, C, D sont sur le cercle de centre O et de rayon 2.