ENONCE: La fonction f est définie sur IR par $f(x) = (x^2 + x - 1)e^x$. On note $f^{(1)} = f'$, $f^{(2)} = f''$, $f^{(3)}$, $f^{(4)}$,... les dérivées successives de f.

- 1. Calculer pour tout réel x, f 'et $f^{(2)}$.
- 2. a) Démontrer par récurrence que pour tout entier $n \ge 1$, $f^{(n)}(x) = (x^2 + a_n x + b_n)e^x$ avec $a_{n+1} = a_n + 2$ et $b_{n+1} = b_n + a_n$.
- b) Déduisez-en que a_n et b_n sont des entiers relatifs.
- 3. On se propose dans cette question d'exprimer a_n et b_n en fonction de n.
- a) Vérifier que la suite a_n est une suite arithmétique. Déduisez-en a_n en fonction de n pour tout $n \ge 1$.
- b) Vérifier que pour tout $n \ge 1$: $b_n = a_{n-1} + a_{n-2} + ... + a_2 + a_1$. Déduisez-en b_n en fonction de n pour tout $n \ge 1$.

CORRIGE: La fonction f est définie sur IR par $f(x) = (x^2 + x - 1)e^x$. On note $f^{(1)} = f'$, $f^{(2)} = f''$, $f^{(3)}$, $f^{(4)}$,... les dérivées successives de f.

- 1. $f'(x) = (x^2 + 3x)e^x$, $f''(x) = (x^2 + 5x + 3)e^x$.
- 2. a) Montrons par récurrence que pour tout entier $n \ge 1$, $f^{(n)}(x) = (x^2 + a_n x + b_n)e^x$ avec $a_n = a_{n-1} + 2$ et $b_n = b_{n-1} + a_{n-1}$: pour n = 1, on a $f'(x) = (x^2 + 3x)e^x$ donc avec $a_1 = 3 = a_0 + 2$ et $b_1 = 0 = a_0 + b_0$, donc la propriété est vraie pour n = 1. Supposons que pour un $n \ge 1$, $f^{(n)}(x) = (x^2 + a_n x + b_n)e^x$ avec $a_n = a_{n-1} + 2$ et $b_n = b_{n-1} + a_{n-1}$ et montrons que $f^{(n+1)}(x) = (x^2 + a_{n+1}x + b_{n+1})e^x$ avec $a_{n+1} = a_n + 2$ et $b_{n+1} = b_n + a_n$:

 $f^{(n+1)}(x) = (f^{(n)}(x))' = (2x + a_n)e^x + (x^2 + a_nx + b_n)e^x = (x^2 + (a_n + 2)x + (b_n + a_n))e^x$. La récurrence est bien démontrée...

- b) $a_1 = 3$, $b_1 = 0$ et $a_{n+1} = a_n + 2$, $b_{n+1} = b_n + a_n$; on montre par récurrence que pour tout $n \ge 1$, a_n et b_n sont des entiers relatifs: la somme de deux entiers relatifs est un entier relatif ...
- 3. a) On a $a_1 = 3$ et $a_{n+1} = a_n + 2$ donc la suite (a_n) est une suite arithmétique de raison 2; pour tout $n \ge 1$, $a_n = 2(n-1) + 3 = 2n + 1$.
- b) On a, pour tout $n \ge 1$:

$$\begin{split} b_{\scriptscriptstyle n} &= a_{\scriptscriptstyle n-1} + b_{\scriptscriptstyle n-1} = a_{\scriptscriptstyle n-1} + a_{\scriptscriptstyle n-2} + b_{\scriptscriptstyle n-2} = a_{\scriptscriptstyle n-1} + a_{\scriptscriptstyle n-2} + a_{\scriptscriptstyle n-3} + b_{\scriptscriptstyle n-3} = \\ &= \ldots = a_{\scriptscriptstyle n-1} + a_{\scriptscriptstyle n-2} + \ldots + a_{\scriptscriptstyle 2} + a_{\scriptscriptstyle 1} + b_{\scriptscriptstyle 1} \text{. Comme } b_{\scriptscriptstyle 1} = 0 \text{ , on a bien} \\ b_{\scriptscriptstyle n} &= a_{\scriptscriptstyle n-1} + a_{\scriptscriptstyle n-2} + \ldots + a_{\scriptscriptstyle 2} + a_{\scriptscriptstyle 1} \text{.} \end{split}$$

Donc b_n est égale à la somme des n-1 premiers termes d'une suite arithmétique, donc , pour tout $n \ge 1$,

$$b_n = \frac{n-1}{2}(a_{n-1} + a_1) = \frac{n-1}{2}(2(n-1) + 1 + 3) = n^2 - 1.$$

