ENONCE: Dans le plan, on considère le triangle ABC isocèle en A, de hauteur [AH] tel que AH = BC = 4.

- 1. En justifiant la construction, placer le point G barycentre du système de points pondérés {(A, 2); (B, 1); (C; 1)}.
- 2. On désigne par M un point quelconque du plan.
- a) Montrer que le vecteur $\vec{V} = 2 \overline{\text{MA}} \cdot \overline{\text{MB}} \cdot \overline{\text{MC}}$ est un vecteur de norme 8.
- b) Déterminer et construire l'ensemble E_1 des points M du plan tels que $\|2\overline{MA} + \overline{MB} + \overline{MC}\| = \|\overline{V}\|$.
- 3. On considère le système de points pondérés $\{(A, 2); (B, n); (C; n)\}$ où n est un entier naturel.
- a) Montrer que, pour tout n, le barycentre G_n de ce système de points existe. Placer G_0 , G_1 , G_2 .
- b) Montrer que le point G_n appartient au segment [AH].
- c) Calculer la distance A G_n en fonction de n et déterminer la limite de A G_n lorsque n tend vers $+\infty$.
- d) Soit E_n l'ensemble des points M du plan tels que $\|2\overline{MA} + n\overline{MB} + n\overline{MC}\| = n\|\overline{V}\|$. Montrer que E_n est un cercle qui passe par le point A. Préciser le centre et le rayon r_n de ce cercle.
- e) Construire E_2 .

CORRIGE

- 1. Comme ABC est isocèle en A, H est le milieu de [BC] et barycentre de {(B, 1), (C, 1)}; alors G est barycentre du système de points pondérés {(A, 2); (H, 2)}, et donc G est le milieu de [AH].
- 2. a) On a $\vec{V} = 2\vec{M}\vec{A} \vec{M}\vec{B} \vec{M}\vec{C} = \vec{M}\vec{A} \vec{M}\vec{B} + \vec{M}\vec{A} \vec{M}\vec{C} = \vec{B}\vec{A} + \vec{C}\vec{A} = 2\vec{H}\vec{A}$; or AH = 4 donc $||\vec{V}|| = 8$.
- b) On a, pour tout point M du plan, $2\overline{MA} + \overline{MB} + \overline{MC} = 4\overline{MG}$, donc l'ensemble E_1 est l'ensemble des points M du plan tel que $4MG = \|\vec{V}\| = 8$, soit MG = 2; donc l'ensemble E_1 est le cercle de centre G et de rayon 2.
- 3. a) Le point G_n existe si la somme des coefficients est non nulle : 2 + n + n = 2 + 2n > 0 puisque n est un entier naturel. G_0 est le point A, G_1 est le point G de la question 1, G_2 est l'isobarycentre de ABC (centre de gravité).
- b) Pour tout entier naturel n, on a H est le barycentre de $\{(B, n), (C, n)\}$; alors G_n est barycentre du système de points pondérés $\{(A, 2); (H, 2n)\}$, donc le point G_n appartient au segment [AH].

c) On a
$$\overline{AG_n} = \frac{n}{2+2n}\overline{AB} + \frac{n}{2+2n}\overline{AC} = \frac{n}{2+2n}(\overline{AB} + \overline{AC})$$
 et la distance $AG_n = \frac{n}{2+2n}(2AH) = \frac{4n}{1+n}$ et la limite de

A G_n lorsque n tend vers $+\infty$ est égale à 4 (G_n tend vers H).

d) Pour tout entier naturel n, et pour tout point M du plan, on a

 $2\overline{MA} + n\overline{MB} + n\overline{MC} = (2 + 2n)\overline{MG}_n$ donc l'ensemble E_n est l'ensemble des points M du

plan tel que
$$(2+2n)MG_n = n\|\vec{V}\| = 8n$$
, soit $MG_n = \frac{4n}{1+n}$; donc l'ensemble E_n est le cercle

de centre G_n et de rayon $r_n = \frac{4n}{1+n}$. Comme A $G_n = \frac{4n}{1+n}$, E_n passe par le point A.

