ENONCE: On considère la fonction f définie sur]0; $+\infty[$ par $f(x) = \frac{(\ln x)^2}{x}$.

- 1. Déterminer les limites de f en 0 et en $+\infty$.
- 2. Calculer la dérivée de f et déterminer son sens de variations sur]0; $+\infty[$.
- 3. Tracer la représentation graphique de f dans le plan.
- 4. On pose, pour $p \ge 1$, $I_p = \int_1^{e^2} \frac{(\ln x)^p}{x^2} dx$. A l'aide d'une intégration par parties, calculer la valeur exacte de I_1 .
- 5. Montrer que, pour $p \ge 1$, $I_{p+1} = -\frac{2^{p+1}}{e^2} + (p+1)I_p$. En déduire les valeurs exactes de I_2 , I_3 , I_4 .

CORRIGE:

1.
$$\lim_{x \to 0^+} f(x) = +\infty$$
 car $\lim_{x \to 0^+} (\ln(x))^2 = +\infty$ et $\lim_{x \to 0^+} \frac{1}{x} = +\infty$. $\lim_{x \to +\infty} f(x) = 0$ car $f(x) = \left(\frac{\ln x}{\sqrt{x}}\right)^2$ et

$$\lim_{x \to +\infty} \frac{\ln(x)}{\sqrt{x}} = \lim_{x \to +\infty} \frac{2\ln(\sqrt{x})}{\sqrt{x}} = 0.$$

2.
$$f'(x) = \frac{2\ln x - (\ln x)^2}{x^2} = \frac{\ln x}{x^2} (2 - \ln x)$$
 s'annule en 1 et

en e^2 d'où le tableau de variations sur]0; + ∞ [:

х	0	1		e^2		+∞
f'(x)	_	0	+	0	_	
f(x)	+8/	\	/	4e ⁻²		. 0

4. On pose
$$u(x) = \ln x$$
 et $v'(x) = \frac{1}{x^2}$, $v(x) = \frac{-1}{x}$; d'où $I_1 = \int_1^{e^2} \frac{\ln x}{x^2} dx = \left[\frac{-\ln x}{x}\right]_1^{e^2} - \int_1^{e^2} \frac{-1}{x^2} dx = \frac{-2}{e^2} - \left[\frac{1}{x}\right]_1^{e^2} = 1 - \frac{3}{e^2}$.

5. On a, pour
$$p \ge 1$$
, $I_{p+1} = \int_{1}^{e^2} \frac{(\ln x)^{p+1}}{x^2} dx = \left[\frac{-(\ln x)^{p+1}}{x} \right]_{1}^{e^2} - \int_{1}^{e^2} \left(\frac{-1}{x} (p+1) \frac{1}{x} (\ln x)^p \right) dx = \frac{-2^{p+1}}{e^2} + (p+1)I_p$.

D'où
$$I_2 = \frac{-2^{1+1}}{e^2} + (1+1)I_1 = 2 - \frac{10}{e^2}$$
, $I_3 = \frac{-2^{2+1}}{e^2} + (2+1)I_2 = 6 - \frac{38}{e^2}$, $I_4 = \frac{-2^{3+1}}{e^2} + (3+1)I_3 = 24 - \frac{168}{e^2}$.