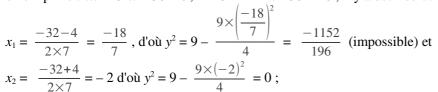
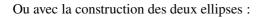
Pour chaque proposition, il y a une seule bonne réponse. Une bonne réponse rapporte un point et une mauvaise réponse enlève 0,5 point. Un absence de réponse ne rapporte ni n'enlève de point.

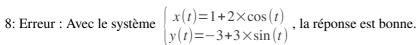
Propositions	A	В	C
1. Le cercle de centre A(1; – 2) et de rayon 2 a pour équation	$x^2 + 2x + y^2 - 4y - 5$ = 0	$x^2 - 2x + y^2 + 4y - 5 = 0$	$x^2 - 2x + y^2 + 4y + 5 = 0$
2. Le cercle de diamètre [AB] avec A(2; 1), B(4; – 3) a pour équation	$x^2 - 3x + y^2 + 2y = 20$	$x^2 - 2x + y^2 + 4y = 20$	$x^2 + 3x + y^2 - 2y = 20$
3. Le cercle de centre $O(0; 0)$ et de rayon 5 et la droite d'équation $y = 2x - 5$	Se coupent en deux points	Se coupent en un point	Ne se coupent pas
4. A(-2; 4), B(1; 1) et C(-2;0); le cercle circonscrit du triangle ABC a pour équation	$x^2 + 2x + y^2 - 4y = 5$	$x^2 - 2x + y^2 + 4y = 0$	$x^2 + 2x + y^2 - 4y = 0$
5. Le cercle d'équation $x^2 + 2x + y^2 - 4y = 0$	Passe par (2; –4)	Passe par (1; – 2)	Passe par (-2; 4)
6. L'ellipse de centre A(-2 ; 3) et de demi axes $a = 1$ et $b = 2a$ a pour équation	$\frac{(x-2)^2}{4} + \frac{(y+3)^2}{9} = 1$	$(x+2)^2 + \frac{(y-3)^2}{2} = 1$	$(x+2)^2 + \frac{(y-3)^2}{4} = 1$
7. Les ellipses d'équations $\frac{x^2}{4} + \frac{y^2}{9} = 1$ et $(x+1)^2 + \frac{y^2}{4} = 1$	Se coupent en quatre points	Se coupent en deux points	Se coupent en un seul point
8. Le système $\begin{cases} x(t) = -1 + 2 \times \cos(t) \\ y(t) = 3 \times \sin(t) \end{cases}$ est	Le paramétrage de l'ellipse de centre $(1; -3)$ et de demi axes $a = 2$ et $b = 3$	Le paramétrage de l'ellipse de centre $(1; -3)$ et de demi axes $a = 2$ et $b = 3$	Le paramétrage de l'ellipse de centre $(1; -3)$ et de demi axes $a = 2$ et $b = 3$
9. L'ellipse $\begin{cases} x(t) = 1 + 2 \times \cos(t) \\ y(t) = 2 + 3 \times \sin(t) \end{cases}$ coupe la droite d'équation	y = x + 1	y = -x - 1	y = -2
10. En perspective centrale, les droites perpendiculaires au plan frontal	Sont représentées par des points	Sont parallèles sur le dessin	Se coupent en un point sur la ligne d'horizon
11. En perspective centrale, les droites parallèles au plan frontal	Sont représentées par des points	Sont parallèles sur le dessin	Se coupent en un point sur la ligne d'horizon
12. En perspective centrale, deux droites parallèles	Sont sécantes dans le plan frontal	Sont parallèles sur le dessin	Se coupent en un point sur la ligne d'horizon
13. En perspective cavalière, deux droites parallèles	Sont sécantes dans le plan frontal	Sont parallèles sur le dessin	Se coupent en un point sur la ligne d'horizon
14. En perspective cavalière, deux droites non coplanaires	Sont sécantes dans le plan frontal	Sont parallèles sur le dessin	Ne se coupent pas sur le dessin

^{1:} Erreur : l'équation est $(x-1)^2 + (y+2)^2 = 2^2$ qui donne $x^2 - 2x + y^2 + 4y + 5 = 4$, soit $x^2 - 2x + y^2 + 4y + 1 = 0$.


^{2:} Erreur ; le centre et (3; -1) ; le rayon est $\sqrt{5}$; l'équation est $(x-3)^2 + (y+1)^2 = 5$ qui donne $x^2 - 6x + y^2 + 2y + 5 = 0$.

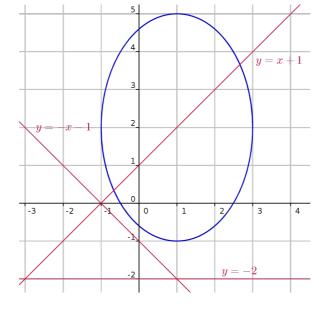
- 3: On résout le système $x^2 + y^2 = 25$ et y = 2x 5 : $x^2 + (2x 5)^2 = 25$, soit $x^2 + 4x^2 20x + 25 = 25$, soit $5x^2 20x = 0$, soit 5x(x 4) = 0 qui a deux solutions : $x_1 = 0$ et $x_2 = 4$: **A**.
- 4: On vérifie si les coordonnées des trois points vérifient l'équation : C.
- 5: On vérifie si les coordonnées du point proposé vérifient l'équation : C.
- 6: **C**.
- 7: On peut écrire la première équation : $\frac{y^2}{9} = 1 \frac{x^2}{4}$ donne $y^2 = 9 \frac{9x^2}{4}$ et la deuxième

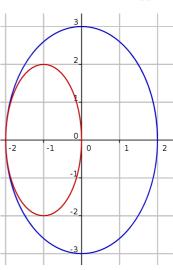

équation : $(x+1)^2 + \frac{y^2}{4} = 1$ donne $\frac{y^2}{4} = 1 - (x+1)^2$ qui donne $y^2 = 4 - 4(x+1)^2$; on fait l'égalité de ces deux


expressions: $9 - \frac{9x^2}{4} = 4 - 4(x+1)^2$; on met au même dénominateur $36 - 9x^2 = 16 - 16(x+1)^2$; on développe et

on simplifie : $7x^2 + 32x + 36 = 0$; $\Delta = 32^2 - 4 \times 7 \times 36 = 16$; il y a deux solutions :

il y a un point d'intersection : (-2; 0) : \mathbb{C} .





9: On trace l'ellipse et chacune des droites ; on obtient : **A**.

- 11: **B**.
- 12 : **C**.
- 13 : **B**.
- 14 : **A**.

